• Title/Summary/Keyword: hybrid anaerobic filter

Search Result 6, Processing Time 0.02 seconds

Denitrification of Anaerobic Sludge in Hybrid type Anaerobic Reactor(I): Acetate as Substrate (Hybrid type 반응조에서의 혐기성 슬러지의 탈질(I): 초산을 기질로 사용한 경우)

  • Shin, Hang-Sik;Kim, Ku-Yong;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.4
    • /
    • pp.35-44
    • /
    • 1999
  • In this study, it was attempted to remove nitrate and carbon in a single-stage reactor using acetate as substrate. Hybrid type upflow sludge baffled filter reactor was adopted using anaerobic sludge. Sludge bed in the bottom of reactor was intended to remove carbon and nitrate by denitrification and methanogenesis. And floating media in the upper part of reactor were intended to remove remaining carbon which was not removed due to the inhibition of nitrogen oxide on methane producing bacteria. The reactor removed over 96% of COD and most of nitrate with volumetric loading rate of $4.0kgCOD/m^3{\cdot}day$, hydraulic retention time of 24hr, 4,000mgCOD/L, and $266mgNO_3-N/L$. Nitrate in anaerobic sludge was converted to nitrogen gas(denitrification) or ammonia (ammonification) according to pH of influent, COD removal efficiency was easily affected by the change of volumetric loading rates and nitrate concentration. And when influent pH was about 4.7, most nitrate changed to ammonia while when influent pH was about 6.8~7.0, most nitrate denitrified independent of $COD/NO_3-N$ ratio. Most granules were gray and a few were black. In gray-colored granule, black inner side was covered with gray substance and SEM illustrated Methanoccoci type microorganisms which were compact spherical shape. Anaerobic filter removed residual COD effectively which was left in sludge bed due to the inhibition of nitrogen oxide.

  • PDF

Role of Crossflow Module Media in Gas-liquid-solid Separation and Biomass Retention in Hybrid Anaerobic Filter (교차흐름식 모듈 충전 hybrid 혐기성여상의 기·액·고 분리능 및 슬러지보유능)

  • Chang, Duk;Chae, Hee-Wang;Bae, Hyung-Suk;Chung, In;Han, Sang-Bae;Hur, Joon-Moo;Hong, Ki-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.769-778
    • /
    • 2009
  • Performances and internal behaviors of the upflow hybrid anaerobic filters treating a dairy wastewater were analyzed to identify the functions and roles of the modular crossflow media and sludge bed layer and to discover their interrelationship in the filter. The media could perform independent biological and physical separation role without buildup of sludge bed, while the role of sludge bed was dependent on the function of the media. The filter packed with the crossflow media did not necessarily require the formation of sludge bed when treating a dairy wastewater. Biological contribution of the media was controlled by that of biologically active sludge bed complementing mutually each other. The gas-liquid-solid separation capability of the media was indispensible to ensure the active biological role of sludge bed, since sludge bed buildup without the media had no independently effective biological function. It was believed that the filter in itself could also function as a selector for physical gas-liquid-solid separation resulting in selectively concentrating particles with superior settleability in sludge bed. The sludge bed in the filter played a key role in the physical solids capture from influent as well as biological organics removal.

Treatment of palm oil mill effluent using 2 stage reactors combined anaerobic hybrid reactor and anaerobic attached growth reactor (혼합공정과 부착성장공정을 조합한 2단계 혐기 조합공정에서 palm oil mill effluent의 처리)

  • Shin, Chang-Ha;Son, Sung-Min;Jeong, Joo-Young;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.21-29
    • /
    • 2013
  • Present study was conducted to evaluate the performance of Anaerobic Hybrid Reactor (AHR) combined with two types of anaerobic attached growth reactors at mesophilic temperature ($37^{\circ}C$). The reactor was operated at the influent substrate condition of 19,400 mg/L soluble chemical oxygen demand (sCOD). The organic loading rate (OLR) and flow rate were varied in the range of $9.5{\sim}22.5kg/m^3$. day and 10.6 ~ 26.0 L/day respectively since start-up was done. The COD removal efficiency of 93 % was measured at the OLR of $14kg/m^3$. day in AHR. However a reduction in removal efficiency to as low as 85 % could have been related to a combined effect of high concentration suspended solids (SS) concentration over 3,800 mg/L. On the other hand the total COD removal efficiencies were measured to be 96.3 % and 96.2 % for AHR+APF and AHR+ADF respectively. The pH of the POME was adjusted to neutral range by using sodium bicarbonate at the initial stages of the reactor feed, later stages pH adjustment was not required as the pH was maintained in the desired neutral range due to self-buffering capacity of the reactor. The reactor proved to be economically acceptable and operationally stable. The biogas was measured to have $CH_4$ and $CO_2$ with a ratio of 35:65, and methane gas production rate was estimated to be $0.17{\sim}10.269L\;CH_4/g\;COD_{removed}$.

Effect of Organic Loading Rate on the Performance of Anaerobic Hybrid Reactor (유기물 부하가 Anaerobic Hybrid Reactor 운전효율에 미치는 영향)

  • Shin, Chang-Ha;Oh, Dae-Yang;Kim, Tae-Hoon;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.4
    • /
    • pp.497-502
    • /
    • 2012
  • Anaerobic Digestion Process is evaluated as efficient wastewater treatment process with the removal of high concentrations of organic waste and production of biogas. This study was performed using hybrid anaerobic hybrid reactor (AHR) which consists of anaerobic sludge blanket (UASB) and biofilm-coated filter media was applied for Palm Oil Mill Effluent (POME) for 80 days to know optimum removal efficiency and production of biogas by comparing each part which divided changing Organic Loading Rate (OLR). As a result of this study, the removal efficiency was 90.4 % when the organic loading rate of influent was 15 kg COD/$m^3$/day. Since organic loading rate was up to 20 kg COD/$m^3$/day, the removal rate declined 80.7%. Over loading of influent caused sludge expansion and overproduction of microorganism. Amount of biogas was collected 82.3 L/day and pH was remained 6.9 constantly with balance of alkalinity.

A Study on Anaerobic Treatment and Energy Recovery Technology of Food Waste by Using Hybrid Anaerobic Reactor (Hybrid Anaerobic Reactor를 이용한 음식물쓰레기의 혐기성처리 및 에너지 회수에 관한 연구)

  • Yoon Young-Bong;Park Jin-Young;Ju Jin-Young;Kim Myung-Ho
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.1 s.55
    • /
    • pp.64-75
    • /
    • 2005
  • The total production of food waste was about 11,398ton/day('03) in Korea. Also, food waste was treated by landfill, incineration, reuse and anaerobic digestion. The method of food waste treatment depended primarily on landfill. However, the method of landfill causing social problems was prevented to treat food waste in the first of January 2005.12) Thus, anaerobic digestion is an important method to treat food waste because of possibility of energy recovery as methane gas. In this study, the possibility of food waste treatment containing high organic material and low pH in the one stage anaerobic reactor to save cost and time and energy recovery using $CH_{4}$ gas by the hybrid anaerobic reactor (HAR) was measured. The HAR was designed by combing the merits of the anaerobic filter (AF) to minimize the microorganism shock when food waste of very low pH was injected and up-flow anaerobic sludge blanket (UASB) to prevent from plugging and channeling phenomena by large suspended solids when semi solids were injected. Granule was packed in the section of HAR. The purpose of the BMP experiment was to measure the amount of methane generated when organic material was resolved under anaerobic conditions, to grasp bio resolution of organic material. Total accumulated methane production per VS amount was $0.471(m^{3}/\cal{kg}\;VS)$. So, the value was about $81.2\%$ of theoretical methane production which was $0.58(m^{3}/\cal{kg}\;VS)$ by elementary analysis and organic matter removal velocity (K) was $0.18(d^{-1})$. From these results, food waste was treated by anaerobic treatment. From this study, $CH_{4}$ generation from food waste (11,398 ton/day) could be estimated. By using an energy conversion factor of Braun's study, $5.97KWh/m^{3}\;CH4,\;60\%\;of\;CH_{4}$ gas generation, the amount of total energy producing food waste is to 6,727MWh/day. It could be confirmed that energy recovery using $CH_{4}$ gas was possible. Above these results, food waste containing organic matters of high concentration could be treated in HRT 30 days under an anaerobic condition, using the hybrid anaerobic reactor and reuse of $CH_{4}$ gas was possible.

Denitrification of Anaerobic Sludge in Hybrid Type Anaerobic Reactor(II): Glucose as Substrate (Hybrid type 반응조에서의 혐기성 슬러지의 탈질(II): 기질이 글루코스인 경우)

  • Shin, Hang-Sik;Kim, Ku-Yong;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.2
    • /
    • pp.196-206
    • /
    • 2000
  • Methanogenesis and denitrification in an upflow sludge baffled filter (UBF) reactor were studied using glucose as a fermentative substrate. Experiments were carried out to investigate how to reduce ammonification by changing alkalinity and $COD/NO_3-N$ ratio. Characteristics of granular sludges were examined by specifics methanogenic activity(SMA) and specific denitrification rate(SDR) tests. Microstructures of granules were examined using a scanning electron microscopy(SEM). It was found that COD was removed efficiently owing to the diverse microorganisms. In nitrate conversion, not only $COD/NO_3-N$ ratio but also influent alkalinity played important role in the ratio of denitrification and ammonification of nitrate. This reactor achieved over 95% COD and 99% nitrate removal efficiencies when influent contained 4000 mgCOD/L and $700mgNO_3-N/L$ at the hydraulic retention time of 24 hours. As $COD/NO_3-N$ ratio decreased, granular methanogenic activities using acetate and butyrate as substrates increased while activities using propionate and glucose decreased. There were three types in granules according to the surface color; gray, yellowish gray, and black. Gray or yellowish gray-colored granules were composed two layers, which were composed of black inner side and gray or yellowish gray surface substances. SEM illustrated that both were rod-type and cocci-type microorganisms resembling Methanothrix sp. and Methanococci sp. This study showed that by controlling the influent alkalinity and $COD/NO_3-N$ ratio, ammonification and denitrification could be manipulated.

  • PDF