• 제목/요약/키워드: hurricane wind loads

검색결과 12건 처리시간 0.019초

Analysis of hurricane directionality effects using event-based simulation

  • Huang, Zhigang;Rosowsky, David V.
    • Wind and Structures
    • /
    • 제3권3호
    • /
    • pp.177-191
    • /
    • 2000
  • This paper presents an approach for evaluating directionality effects for both wind speeds and wind loads in hurricane-prone regions. The focus of this study is on directional wind loads on low-rise structures. Using event-based simulation, hurricane directionality effects are determined for an open-terrain condition at various locations in the southeastern United States. The wind speed (or wind load) directionality factor, defined as the ratio of the N-year mean recurrence interval (MRI) wind speed (or wind load) in each direction to the non-directional N-year MRI wind speed (or wind load), is less than one but increases toward unity with increasing MRI. Thus, the degree of conservatism that results from neglecting directionality effects decreases with increasing MRI. It may be desirable to account for local exposure effects (siting effects such as shielding, orientation, etc.) in design. To account for these effects in a directionality adjustment, the factor described above for open terrain would need to be transformed to other terrains/exposures. A "local" directionality factor, therefore, must effectively combine these two adjustments (event directionality and siting or local exposure directionality). By also considering the direction-specific aerodynamic coefficient, a direction-dependent wind load can be evaluated. While the data necessary to make predictions of directional wind loads may not routinely be available in the case of low-rise structures, the concept is discussed and illustrated in this paper.

The structural safety assessment of a tie-down system on a tension leg platform during hurricane events

  • Yang, Chan K.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • 제1권4호
    • /
    • pp.263-283
    • /
    • 2011
  • The performance of a rig tie-down system on a TLP (Tension Leg Platform) is investigated for 10-year, 100-year, and 1000-year hurricane environments. The inertia loading on the derrick is obtained from the three-hour time histories of the platform motions and accelerations, and the dynamic wind forces as well as the time-dependent heel-induced gravitational forces are also applied. Then, the connection loads between the derrick and its substructure as well as the substructure and deck are obtained to assess the safety of the tie-down system. Both linear and nonlinear inertia loads on the derrick are included. The resultant external forces are subsequently used to calculate the loads on the tie-down clamps at every time step with the assumption of rigid derrick. The exact dynamic equations including nonlinear terms are used with all the linear and second-order wave forces considering that some dynamic contributions, such as rotational inertia, centripetal forces, and the nonlinear excitations, have not been accounted for in the conventional engineering practices. From the numerical simulations, it is seen that the contributions of the second-order sum-frequency (or springing) accelerations can be appreciable in certain hurricane conditions. Finally, the maximum reaction loads on the clamps are obtained and used to check the possibility of slip, shear, and tensile failure of the tie-down system for any given environment.

Computational evaluation of wind loads on buildings: a review

  • Dagnew, Agerneh K.;Bitsuamlak, Girma T.
    • Wind and Structures
    • /
    • 제16권6호
    • /
    • pp.629-660
    • /
    • 2013
  • This paper reviews the current state-of-the-art in the numerical evaluation of wind loads on buildings. Important aspects of numerical modeling including (i) turbulence modeling, (ii) inflow boundary conditions, (iii) ground surface roughness, (iv) near wall treatments, and (vi) quantification of wind loads using the techniques of computational fluid dynamics (CFD) are summarized. Relative advantages of Large Eddy Simulation (LES) over Reynolds Averaged Navier-Stokes (RANS) and hybrid RANS-LES over LES are discussed based on physical realism and ease of application for wind load evaluation. Overall LES based simulations seem suitable for wind load evaluation. A need for computational wind load validations in comparison with experimental or field data is emphasized. A comparative study among numerical and experimental wind load evaluation on buildings demonstrated generally good agreements on the mean values, but more work is imperative for accurate peak design wind load evaluations. Particularly more research is needed on transient inlet boundaries and near wall modeling related issues.

Nonlinear modeling of roof-to-wall connections in a gable-roof structure under uplift wind loads

  • Enajar, Adnan F.;Jacklin, Ryan B.;El Damatty, Ashraf A.
    • Wind and Structures
    • /
    • 제28권3호
    • /
    • pp.181-190
    • /
    • 2019
  • Light-frame wood structures have the ability to carry gravity loads. However, their performance during severe wind storms has indicated weakness with respect to resisting uplift wind loads exerted on the roofs of residential houses. A common failure mode observed during almost all main hurricane events initiates at the roof-to-wall connections (RTWCs). The toe-nail connections typically used at these locations are weak with regard to resisting uplift loading. This issue has been investigated at the Insurance Research Lab for Better Homes, where full-scale testing was conducted of a house under appropriate simulated uplift wind loads. This paper describes the detailed and sophisticated numerical simulation performed for this full-scale test, following which the numerical predictions were compared with the experimental results. In the numerical model, the nonlinear behavior is concentrated at the RTWCs, which is simulated with the use of a multi-linear plastic element. The analysis was conducted on four sets of uplift loads applied during the physical testing: 30 m/sincreased by 5 m/sincrements to 45 m/s. At this level of uplift loading, the connections exhibited inelastic behavior. A comparison with the experimental results revealed the ability of the sophisticated numerical model to predict the nonlinear response of the roof under wind uplift loads that vary both in time and space. A further component of the study was an evaluation of the load sharing among the trusses under realistic, uniform, and code pressures. Both the numerical model and the tributary area method were used for the load-sharing calculations.

Analysis and performance of offshore platforms in hurricanes

  • Kareem, Ahsan;Kijewski, Tracy;Smith, Charles E.
    • Wind and Structures
    • /
    • 제2권1호
    • /
    • pp.1-23
    • /
    • 1999
  • Wind effects are critical considerations in the design of topside structures, overall structural systems, or both, depending on the water depth and type of offshore platform. The reliable design of these facilities for oil fields in regions of hostile environment can only be assured through better understanding of the environmental load effects and enhanced response prediction capabilities. This paper summarizes the analysis and performance of offshore platforms under extreme wind loads, including the quantification of wind load effects with focus on wind field characteristics, steady and unsteady loads, gust loading factors, application of wind tunnel tests, and the provisions of the American Petroleum Institute Recommended Practice 2A - Working Stress Design (API RP 2A-WSD) for the construction of offshore structures under the action of wind. A survey of the performance of platforms and satellite structures is provided, and failure mechanisms concerning different damage scenarios during Hurricane Andrew are examined. Guidelines and provisions for improving analysis and design of structures are addressed.

Application of a wireless pressure sensing system to coastal wind monitoring

  • Pinelli, J.P.;Subramanian, C.S.;Lapilli, C.;Buist, L.
    • Wind and Structures
    • /
    • 제8권3호
    • /
    • pp.179-196
    • /
    • 2005
  • This paper describes the application of a wireless data acquisition system to monitor wind pressures and velocities with absolute pressure sensors and an anemometer. The system was developed for future deployment, as part of a research effort currently underway to instrument coastal homes in Florida to monitor roof wind pressures during hurricanes. The proposed wireless system will replace the current system that involves a large amount of hardwired connections from the sensors to the data processing unit that requires labor intensive wiring and preparation of the home. The paper describes comparison studies and field tests to assess the performance of the system. The new system offers the advantages of light hardware, ease of installation, capacity for 48 hours of continuous data acquisition, good frequency and amplitude responses, and a relatively simple maintenance. However, the tests also show that the shape of the shell that has been previously used to protect the sensors might interfere with the proper measurement of the pressures.

풍하중 산정을 위한 한반도 단독주택의 대표유형 선정 (A Selection of Representative Type the Korean Peninsula Detached Dwelling for Estimate the Wind Load)

  • 박종길;정우식;최효진
    • 한국환경과학회지
    • /
    • 제18권12호
    • /
    • pp.1417-1426
    • /
    • 2009
  • As the damages due to natural disasters continue to increase, a growing interest is being witnessed in such studies that focus on preventive measures to reduce damages rather than on their recovery. As such, the U.S. has been actively conducting projects to develop new models that can forecast potential damages due to natural disasters and widely employing them in actual cases. With no specific models developed in Korea yet, this study aimed to introduce an overseas typhoon model as part of the advanced efforts and apply it the actual cases occurring across the nation. This model estimates wind loads by measuring the impact of a strong wind upon buildings, and measurements require a number of parameters. Those parameters should include the types and dimensions of buildings and the type of the roofs. As for the FPHLM(Florida Public Hurricane Loss Model), a precedent model for our study, we were able to take advantage of number of the statistics and detailed categorizations on the residential buildings in the U.S., which enabled us to select the representative building types and produce their wind loads. With no sufficient relevant statistics available for the nation, however, we may not be able to readily measure the wind loads on the nation's residential buildings. Therefore, this study tried to choose the representative types, heights and dimensions of the buildings for the measurement of wind loads. We consequently came up with a representative house having an area between 62.81 and $95.56m^2$, either a flat roof or hip roof, a height of 2.6 m, an side ratio of 1.5, and the width and length of the mean $85m^2$ sized house being 11,300 mm and 7,530 mm, respectively.

태풍 접근에 의한 바람 환경 변화가 건물에 미치는 영향 (Effects of Changing in Wind Environment of Typhoon Approaching to a Building)

  • 박종길;정우식;최효진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.561-564
    • /
    • 2009
  • In order to reduce damage from natural disasters, prevention activities through analysis and predicting based on meteorological factor and damage data is required. Other countries already have continuously studied on natural disasters and developed reducing disasters damage. But the risk assessment model for natural disaster is not to Korea. Therefore, a previous model of hurricane, Florida Public Hurricane Loss Model(FPHLM), is the basis and is applying to domestic situation. Accordingly, this study introduces the variables selecting process because input variables should be selected under Korea present state and be used. The estimating representative damage method would be necessary along with selecting housing types representing relevant areas because estimating damage amount of all over relevant areas housing was very hard during damage estimating process. But there is no exact representative housing types in the Korea. Therefore, we select housing types applicable to risk assessment model for natural disasters representing the Korea through previous studies and literature reviews. We using ASCE 7-98(Minimum Design Loads for Buildings and Other Structures, 1998) standard which estimated wind load using 3-second gust. ASCE 7-98 divided Main Wind Force Resistance System(MWFRS) and Component and Cladding(C&C) and it estimated wind load. Therefore, we estimate wind load affected by 3-second gust of a typhoon Maemi through calculating wind load process using selected representative detached house types in the process of selecting input variables for previous disaster predict model. The result of houses damage amount is about 230 hundred million won. This values are limit the 1-story detached dwelling, 19~29pyeong(62.81~95.56 $m^2$) of total area and flat roof. Therefore, this process is possible application to other type houses.

  • PDF

Ridge and field tile aerodynamics for a low-rise building: a full-scale study

  • Tecle, Amanuel;Bitsuamlak, Girma T.;Suskawang, Nakin;Chowdury, Arindam Gan;Fuez, Serge
    • Wind and Structures
    • /
    • 제16권4호
    • /
    • pp.301-322
    • /
    • 2013
  • Recent major post-hurricane damage assessments in the United States have reported that the most common damages result from the loss of building roof coverings and subsequent wind driven rain intrusion. In an effort to look further into this problem, this paper presents a full-scale (Wall of Wind --WoW--) investigation of external and underneath wind pressures on roof tiles installed on a low-rise building model with various gable roofs. The optimal dimensions for the low-rise building that was tested with the WOW are 2.74 m (9 ft) long, 2.13 m (7 ft) wide, and 2.13 m (7 ft) high. The building is tested with interchangeable gable roofs at three different slopes (2:12; 5:12 and 7:12). The field tiles of these gable roofs are considered with three different tile profiles namely high (HP), medium (MP), and low profiles (LP) in accordance with Florida practice. For the ridge, two different types namely rounded and three-sided tiles were considered. The effect of weather block on the "underneath" pressure that develops between the tiles and the roof deck was also examined. These tests revealed the following: high pressure coefficients for the ridge tile compared to the field tiles, including those located at the corners; considerably higher pressure on the gable end ridge tiles compared to ridge tiles at the middle of the ridge line; and marginally higher pressure on barrel type tiles compared to the three-sided ridge tiles. The weather blocking of clay tiles, while useful in preventing water intrusion, it doesn't have significant effect on the wind loads of the field tiles. The case with weather blocking produces positive mean underneath pressure on the field tiles on the windward side thus reducing the net pressures on the windward surface of the roof. On the leeward side, reductions in net pressure to a non-significant level were observed due to the opposite direction of the internal and external pressures. The effect of the weather blocking on the external pressure on the ridge tile was negligible.

한국 연안 해상풍력 구조물의 설계조건 비교분석 (Comparative Analysis on the Design Conditions for Offshore Wind Power Structures in the Coastal Sea of Korea)

  • 고동휘;정신택;조홍연;강금석
    • 한국해안·해양공학회논문집
    • /
    • 제26권1호
    • /
    • pp.25-32
    • /
    • 2014
  • 해상풍력 구조물은 풍속과 파고 등 유체동역학적 하중의 영향을 받는다. 유럽의 경우 다수의 해상풍력발전기가 설치되어 있고, 한국의 경우에는 설치사례가 없으나, 해상풍력발전에 대한 관심이 고조되어 조만간 설계단계가 도래할 것으로 예상된다. 본 연구에서는 ABS(2010, 2013)와 IEC(2009)에서 제공하는 설계 기준을 이용하여 구조물의 신뢰성 수준을 검토하였다. 한국 연안 4개 지점(군산, HeMOSU 1호, 목포, 제주)의 해상조건을 사용하여 바람과 파랑하중, 해상풍력발전 구조물의 응답에 대하여 적용하였다. 검토 결과, 태풍이 우세한 해역의 경우 큰 변동성 때문에 IEC 설계기준을 한국 연안에 적용하는 경우, 유럽 해상에 적용한 결과보다 신뢰도 지수가 낮게 산정되었다. 유럽의 경우와 유사한 수준의 신뢰도 확보를 위해서는 ABS(2010, 2013) 100년 빈도 설계기준을 적용하는 것이 바람직한 것으로 파악되었다. 그러나, IEC 기준은 태풍의 영향에 대한 고려가 미흡하고, ABS 기준은 WSD 설계법이므로 국내 실정에 맞는 Level 1 신뢰성 설계법 도입이 필요하며, 국내 바람과 파랑 하중에 대한 통계적 특성을 고려하여 설계방정식을 설정하는 것도 필요하다.