• Title/Summary/Keyword: hurricane simulation

Search Result 17, Processing Time 0.024 seconds

Development of devices and methods for simulation of hurricane winds in a full-scale testing facility

  • Huang, Peng;Chowdhury, Arindam Gan;Bitsuamlak, Girma;Liu, Roy
    • Wind and Structures
    • /
    • v.12 no.2
    • /
    • pp.151-177
    • /
    • 2009
  • The International Hurricane Research Center (IHRC) at Florida International University (FIU) is pursuing research to better understand hurricane-induced effects on residential buildings and other structures through full-scale aerodynamic and destructive testing. The full-scale 6-fan Wall of Wind (WoW) testing apparatus, measuring 4.9 m tall by 7.3 m wide, is capable of generating hurricane-force winds. To achieve windstorm simulation capabilities it is necessary to reproduce mean and turbulence characteristics of hurricane wind flows. Without devices and methods developed to achieve target wind flows, the full-scale WoW simulations were found to be unsatisfactory. To develop such devices and methods efficiently, a small-scale (1:8) model of the WoW was built, for which simulation devices were easier and faster to install and change, and running costs were greatly reduced. The application of such devices, and the use of quasiperiodic fluctuating waveforms to run the WoW fan engines, were found to greatly influence and improve the turbulence characteristics of the 1:8 scale WoW flow. Reasonable reproductions of wind flows with specified characteristics were then achieved by applying to the full-scale WoW the devices and methods found to be effective for the 1:8 scale WoW model.

Analysis of hurricane directionality effects using event-based simulation

  • Huang, Zhigang;Rosowsky, David V.
    • Wind and Structures
    • /
    • v.3 no.3
    • /
    • pp.177-191
    • /
    • 2000
  • This paper presents an approach for evaluating directionality effects for both wind speeds and wind loads in hurricane-prone regions. The focus of this study is on directional wind loads on low-rise structures. Using event-based simulation, hurricane directionality effects are determined for an open-terrain condition at various locations in the southeastern United States. The wind speed (or wind load) directionality factor, defined as the ratio of the N-year mean recurrence interval (MRI) wind speed (or wind load) in each direction to the non-directional N-year MRI wind speed (or wind load), is less than one but increases toward unity with increasing MRI. Thus, the degree of conservatism that results from neglecting directionality effects decreases with increasing MRI. It may be desirable to account for local exposure effects (siting effects such as shielding, orientation, etc.) in design. To account for these effects in a directionality adjustment, the factor described above for open terrain would need to be transformed to other terrains/exposures. A "local" directionality factor, therefore, must effectively combine these two adjustments (event directionality and siting or local exposure directionality). By also considering the direction-specific aerodynamic coefficient, a direction-dependent wind load can be evaluated. While the data necessary to make predictions of directional wind loads may not routinely be available in the case of low-rise structures, the concept is discussed and illustrated in this paper.

Wind profile management and blockage assessment for a new 12-fan Wall of Wind facility at FIU

  • Aly, Aly Mousaad;Chowdhury, Arindam Gan;Bitsuamlak, Girma
    • Wind and Structures
    • /
    • v.14 no.4
    • /
    • pp.285-300
    • /
    • 2011
  • Researchers at the International Hurricane Research Center (IHRC), Florida International University (FIU), are working in stages on the construction of a large state-of-the-art Wall of Wind (WoW) facility to support research in the area of Wind Engineering. In this paper, the challenges of simulating hurricane winds for the WoW are presented and investigated based on a scale model study. Three wind profiles were simulated using airfoils, and/or adjustable planks mechanism with and without grids. Evaluations of flow characteristics were performed in order to enhance the WoW's flow simulation capabilities. Characteristics of the simulated wind fields are compared to the results obtained from a study using computational fluid dynamics (CFD) and also validated via pressure measurements on small-scale models of the Silsoe cube building. Optimal scale of the test model and its optimal distance from the WoW contraction exit are determined - which are two important aspects for testing using an open jet facility such as the WoW. The main objective of this study is to further the understanding of the WoW capabilities and the characteristics of its test section by means of intensive tests and validations at small scale in order to apply this knowledge to the design of the full-scale WoW and for future wind engineering testing.

Logic tree approach for probabilistic typhoon wind hazard assessment

  • Choun, Young-Sun;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.607-617
    • /
    • 2019
  • Global warming and climate change are increasing the intensity of typhoons and hurricanes and thus increasing the risk effects of typhoon and hurricane hazards on nuclear power plants (NPPs). To reflect these changes, a new NPP should be designed to endure design-basis hurricane wind speeds corresponding to an exceedance frequency of $10^{-7}/yr$. However, the short typhoon and hurricane observation records and uncertainties included in the inputs for an estimation cause significant uncertainty in the estimated wind speeds for return periods of longer than 100,000 years. A logic-tree framework is introduced to handle the epistemic uncertainty when estimating wind speeds. Three key parameters of a typhoon wind field model, i.e., the central pressure difference, pressure profile parameter, and radius to maximum wind, are used for constructing logic tree branches. The wind speeds of the simulated typhoons and the probable maximum wind speeds are estimated using Monte Carlo simulations, and wind hazard curves are derived as a function of the annual exceedance probability or return period. A logic tree decreases the epistemic uncertainty included in the wind intensity models and provides reasonably acceptable wind speeds.

Full-scale simulation of wind-driven rain and a case study to determine the rain mitigation effect of shutters

  • Krishna Sai Vutukuru;James Erwin;Arindam Gan Chowdhury
    • Wind and Structures
    • /
    • v.38 no.3
    • /
    • pp.171-191
    • /
    • 2024
  • Wind Driven Rain (WDR) poses a significant threat to the building environment, especially in hurricane prone regions by causing interior and content damage during tropical storms and hurricanes. The damage due to rain intrusion depends on the total amount of water that enters the building; however, owing to the use of inadequate empirical methods, the amount of water intrusion is difficult to estimate accurately. Hence, the need to achieve full-scale testing capable of realistically simulating rain intrusion is widely recognized. This paper presents results of a full-scale experimental simulation at the NHERI Wall of Wind Experimental Facility (WOW EF) aimed at obtaining realistic rain characteristics as experienced by structures during tropical storms and hurricanes. A full-scale simulation of rain in strong winds would allow testing WDR intrusion through typical building components. A study of rain intrusion through a sliding glass door is presented, which accounted for the effects of multiple wind directions, test durations and wind speeds; configurations with and without shuttering systems were also considered. The study showed that significant levels of water intrusion can occur during conditions well below current design levels. The knowledge gained through this work may enhance risk modeling pertaining to loss estimates due to WDR intrusion in buildings, and it may help quantify the potential reduction of losses due to the additional protection from shuttering systems on sliding glass doors during winds.

Methodology for Risk Assessment for Exposure to Hurricane Conditions

  • Edge, Billy L.;Jung, Kwang-Hyo
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.1
    • /
    • pp.37-49
    • /
    • 2012
  • An analysis of potential flooding by storm surge and wave run-up and overtopping can be used to evaluate protection afforded by the existing storm protection system. The analysis procedure can also be used to evaluate various protection alternatives for providing typhoon flood protection. To determine risk, the storm surges for both historical and hypothetical are compiled with tide conditions to represent high, slack and low water for neap, spring and mid range tides to use with the statistical procedure known as the Empirical Simulations Technique (EST). The EST uses the historic and hypothetical events to generate a large population of life-cycle databases that are used to compute mean value maximum storm surge elevation frequency relationships. The frequency-of-occurrence relationship is determined for all relevant locations along the shoreline at appropriate locations to identify the effect using the Empirical Storm Simulation (EST). To assist with understanding the process, an example is presented for a study of storm surge analysis for Freeport, Texas. This location is in the Gulf of Mexico and is subject to hurricanes and other tropical storms that approach from the Atlantic Ocean.

Hull/Mooring/Riser Coupled Dynamic Analysis of a Turret-Moored FPSO Compared with OTRC Experiment

  • Kim Young-Bok;Kim Moo-Hyun
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.3
    • /
    • pp.26-39
    • /
    • 2004
  • A vessel/mooring/riser coupled dynamic analysis program in time domain is developed for the global motion simulation of a turret-moored, tanker based FPSO designed for 6000-ft water depth. The vessel global motions and mooring tension are simulated for the non-parallel wind-wave-current 100-year hurricane condition in the Gulf of Mexico. The wind and current forces and moments are estimated from the OCIMF empirical data base for the given loading condition. The numerical results are compared with the OTRC(Offshore Technology Research Center: Model Basin for Offshore Platforms in Texas A&M University) 1:60 model-testing results with truncated mooring system. The system's stiffness and line tension as well as natural periods and damping obtained from the OTRC measurement are checked through numerically simulated static-offset and free-decay tests. The global vessel motion simulations in the hurricane condition were conducted by varying lateral and longitudinal hull drag coefficients, different mooring and riser set up, and wind-exposed areas to better understand the sensitivity of the FPSO responses against empirical parameters. It is particularly stressed that the dynamic mooring tension can be greatly underestimated when truncated mooring system is used.

Transient effects of tendon disconnection on the survivability of a TLP in moderate-strength hurricane conditions

  • Kim, Moo-Hyun;Zhang, Zhi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.13-19
    • /
    • 2009
  • The primary objective of this paper is to investigate the dynamic stability and survivability of a four-column classic TLP (tension-leg platform) under less-than-extreme storm conditions where one or more tendons have been lost due to damage or disconnect. The transient responses of the platform and tendon tensions at the moment of disconnection are particularly underscored. The numerical simulation is based on the BE-FE hybrid hull-tendon-riser coupled dynamic analysis in time domain. Compared to the common industry practice of checking the system without a failed tendon in the beginning, the maximum tension on the neighboring tendon can be significantly increased at the moment of disconnection due to the snap-like transient effects, which can lead to unexpected failure of the total system. It is also found that the transient effects can be reduced with the presence of TTRs (top-tensioned risers) with pneumatic tensioners. It is also seen that the TLP cannot survive in the 100-yr hurricane condition after losing one tendon.

Computational evaluation of wind loads on buildings: a review

  • Dagnew, Agerneh K.;Bitsuamlak, Girma T.
    • Wind and Structures
    • /
    • v.16 no.6
    • /
    • pp.629-660
    • /
    • 2013
  • This paper reviews the current state-of-the-art in the numerical evaluation of wind loads on buildings. Important aspects of numerical modeling including (i) turbulence modeling, (ii) inflow boundary conditions, (iii) ground surface roughness, (iv) near wall treatments, and (vi) quantification of wind loads using the techniques of computational fluid dynamics (CFD) are summarized. Relative advantages of Large Eddy Simulation (LES) over Reynolds Averaged Navier-Stokes (RANS) and hybrid RANS-LES over LES are discussed based on physical realism and ease of application for wind load evaluation. Overall LES based simulations seem suitable for wind load evaluation. A need for computational wind load validations in comparison with experimental or field data is emphasized. A comparative study among numerical and experimental wind load evaluation on buildings demonstrated generally good agreements on the mean values, but more work is imperative for accurate peak design wind load evaluations. Particularly more research is needed on transient inlet boundaries and near wall modeling related issues.