• Title/Summary/Keyword: hurricane damage

Search Result 32, Processing Time 0.028 seconds

Aeroelastic modeling to investigate the wind-induced response of a multi-span transmission lines system

  • Azzi, Ziad;Elawady, Amal;Irwin, Peter;Chowdhury, Arindam Gan;Shdid, Caesar Abi
    • Wind and Structures
    • /
    • v.34 no.2
    • /
    • pp.231-257
    • /
    • 2022
  • Transmission lines systems are important components of the electrical power infrastructure. However, these systems are vulnerable to damage from high wind events such as hurricanes. This study presents the results from a 1:50 scale aeroelastic model of a multi-span transmission lines system subjected to simulated hurricane winds. The transmission lines system considered in this study consists of three lattice towers, four spans of conductors and two end-frames. The aeroelastic tests were conducted at the NSF NHERI Wall of Wind Experimental Facility (WOW EF) at the Florida International University (FIU). A horizontal distortion scaling technique was used in order to fit the entire model on the WOW turntable. The system was tested at various wind speeds ranging from 35 m/s to 78 m/s (equivalent full-scale speeds) for varying wind directions. A system identification (SID) technique was used to evaluate experimental-based along-wind aerodynamic damping coefficients and compare with their theoretical counterparts. Comparisons were done for two aeroelastic models: (i) a self-supported lattice tower, and (ii) a multi-span transmission lines system. A buffeting analysis was conducted to estimate the response of the conductors and compare it to measured experimental values. The responses of the single lattice tower and the multi-span transmission lines system were compared. The coupling effects seem to drastically change the aerodynamic damping of the system, compared to the single lattice tower case. The estimation of the drag forces on the conductors are in good agreement with their experimental counterparts. The incorporation of the change in turbulence intensity along the height of the towers appears to better estimate the response of the transmission tower, in comparison with previous methods which assumed constant turbulence intensity. Dynamic amplification factors and gust effect factors were computed, and comparisons were made with code specific values. The resonance contribution is shown to reach a maximum of 18% and 30% of the peak response of the stand-alone tower and entire system, respectively.

Ridge and field tile aerodynamics for a low-rise building: a full-scale study

  • Tecle, Amanuel;Bitsuamlak, Girma T.;Suskawang, Nakin;Chowdury, Arindam Gan;Fuez, Serge
    • Wind and Structures
    • /
    • v.16 no.4
    • /
    • pp.301-322
    • /
    • 2013
  • Recent major post-hurricane damage assessments in the United States have reported that the most common damages result from the loss of building roof coverings and subsequent wind driven rain intrusion. In an effort to look further into this problem, this paper presents a full-scale (Wall of Wind --WoW--) investigation of external and underneath wind pressures on roof tiles installed on a low-rise building model with various gable roofs. The optimal dimensions for the low-rise building that was tested with the WOW are 2.74 m (9 ft) long, 2.13 m (7 ft) wide, and 2.13 m (7 ft) high. The building is tested with interchangeable gable roofs at three different slopes (2:12; 5:12 and 7:12). The field tiles of these gable roofs are considered with three different tile profiles namely high (HP), medium (MP), and low profiles (LP) in accordance with Florida practice. For the ridge, two different types namely rounded and three-sided tiles were considered. The effect of weather block on the "underneath" pressure that develops between the tiles and the roof deck was also examined. These tests revealed the following: high pressure coefficients for the ridge tile compared to the field tiles, including those located at the corners; considerably higher pressure on the gable end ridge tiles compared to ridge tiles at the middle of the ridge line; and marginally higher pressure on barrel type tiles compared to the three-sided ridge tiles. The weather blocking of clay tiles, while useful in preventing water intrusion, it doesn't have significant effect on the wind loads of the field tiles. The case with weather blocking produces positive mean underneath pressure on the field tiles on the windward side thus reducing the net pressures on the windward surface of the roof. On the leeward side, reductions in net pressure to a non-significant level were observed due to the opposite direction of the internal and external pressures. The effect of the weather blocking on the external pressure on the ridge tile was negligible.

Analysis and performance of offshore platforms in hurricanes

  • Kareem, Ahsan;Kijewski, Tracy;Smith, Charles E.
    • Wind and Structures
    • /
    • v.2 no.1
    • /
    • pp.1-23
    • /
    • 1999
  • Wind effects are critical considerations in the design of topside structures, overall structural systems, or both, depending on the water depth and type of offshore platform. The reliable design of these facilities for oil fields in regions of hostile environment can only be assured through better understanding of the environmental load effects and enhanced response prediction capabilities. This paper summarizes the analysis and performance of offshore platforms under extreme wind loads, including the quantification of wind load effects with focus on wind field characteristics, steady and unsteady loads, gust loading factors, application of wind tunnel tests, and the provisions of the American Petroleum Institute Recommended Practice 2A - Working Stress Design (API RP 2A-WSD) for the construction of offshore structures under the action of wind. A survey of the performance of platforms and satellite structures is provided, and failure mechanisms concerning different damage scenarios during Hurricane Andrew are examined. Guidelines and provisions for improving analysis and design of structures are addressed.

A Study on the Prediction Function of Wind Damage in Coastal Areas in Korea (국내 해안지역의 풍랑피해 예측함수에 관한 연구)

  • Sim, Sang-bo;Kim, Yoon-ku;Choo, Yeon-moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.69-75
    • /
    • 2019
  • The frequency of natural disasters and the scale of damage are increasing due to the abnormal weather phenomenon that occurs worldwide. Especially, damage caused by natural disasters in coastal areas around the world such as Earthquake in Japan, Hurricane Katrina in the United States, and Typhoon Maemi in Korea are huge. If we can predict the damage scale in response to disasters, we can respond quickly and reduce damage. In this study, we developed damage prediction functions for Wind waves caused by sea breezes and waves during various natural disasters. The disaster report (1991 ~ 2017) has collected the history of storm and typhoon damage in coastal areas in Korea, and the amount of damage has been converted as of 2017 to reflect inflation. In addition, data on marine weather factors were collected in the event of storm and typhoon damage. Regression analysis was performed through collected data, Finally, predictive function of the sea turbulent damage by the sea area in 74 regions of the country were developed. It is deemed that preliminary damage prediction can be possible through the wind damage prediction function developed and is expected to be utilized to improve laws and systems related to disaster statistics.

Development for the function of Wind wave Damage Estimation at the Western Coastal Zone based on Disaster Statistics (재해통계기반 서해 연안지역의 풍랑피해예측함수 개발)

  • Choo, Tai Ho;Kwak, Kil Sin;Ahn, Si Hyung;Yang, Da Un;Son, Jong Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.14-22
    • /
    • 2017
  • The frequency and scale of natural disasters due to the abnormal climate phenomena caused by global warming have being increasing all over the world. Various natural disasters, such as typhoons, earthquakes, floods, heavy rain, drought, sweltering heat, wind waves, tsunamis and so on, can cause damage to human life. Especially, the damage caused by natural disasters such as the Earthquake of Japan, hurricane Katrina in the United States, typhoon Maemi and so on, have been enormous. At this stage, it is difficult to estimate the scale of damage due to (future) natural disasters and cope with them. However, if we could predict the scale of damage at the disaster response level, the damage could be reduced by responding to them promptly. In the present study, therefore, among the many types of natural disaster, we developed a function to estimate the damage due to wind waves caused by sea winds and waves. We collected the damage records from the Disaster Report ('91~'14) published by the Ministry of Public Safety and Security about wind waves and typhoons in the western coastal zone and, in order to reflect the inflation rate, we converted the amount of damage each year into the equivalent amount in 2014. Finally, the meteorological data, such as the wave height, wind speed, tide level, wave direction, wave period and so on, were collected from the KMA (Korea Meteorological Administration) and KHOA (Korea Hydrographic and Oceanographic Agency)'s web sites, for the periods when wind wave and typhoon damage occurred. After that, the function used to estimate the wind wave damage was developed by reflecting the regional characteristics for the 9 areas of the western coastal zone.

Effects of geometric shape of LWSCR (lazy-wave steel catenary riser) on its global performance and structural behavior

  • Kim, Seungjun;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • v.8 no.3
    • /
    • pp.247-279
    • /
    • 2018
  • This study aims to investigate the behavioral characteristics of the LWSCR (lazy-wave steel catenary riser) for a turret-moored FPSO (Floating Production Storage Offloading) by using fully-coupled hull-mooring-riser dynamic simulation program in time domain. In particular, the effects of initial geometric profile on the global performance and structural behavior are investigated in depth to have an insight for optimal design. In this regard, a systematic parametric study with varying the initial curvature of sag and arch bend and initial position of touch down point (TDP) is conducted for 100-yr wind-wave-current (WWC) hurricane condition. The FPSO motions, riser dynamics, constituent structural stress results, accumulated fatigue damage of the LWSCR are presented and analyzed to draw a general trend of the relationship between the LWSCR geometric parameters and the resulting dynamic/structural performance. According to this study, the initial curvature of the sag and arch bend plays an important role in absorbing transferred platform motions, while the position of TDP mainly affects the change of static-stress level.

The School Design Factors as Emergency Shelter after Disaster - Focus on the Function for Evacuation Center and Education Maintenance (재난재해 시 응급대피공간으로서 학교시설의 디자인 고려요소 -대피거점기능과 교육활동유지기능을 중심으로-)

  • Kim, Kyung-Sook;Kim, Min-Gyeong
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.18 no.4
    • /
    • pp.69-77
    • /
    • 2011
  • The purpose of this study is to provide the school planning factors as emergency shelter after disaster. The school functions as the evacuation space areas could be classified into the evacuation center, education maintenance, and dwelling. Among these functions, the scopes of our study are limited to the functions of evacuation center and education maintenance. To carry out this purpose, we were comparative analyzed the shelter space problems of Korea and Japan's survey in the existing literatures. In results of our study, the evacuation center's functions are difficult to depending on the disaster types, such as the earthquake, tornado, and hurricane. On the other hand, the education maintenance functions are difficult to deepening on the victims occupied times in the school as emergency shelters. Based on these findings, the Korea school planning as the emergency shelters are desired to reflect that the evacuation's functions based on the disaster type of the damage from storms, and the education maintenance's functions based on the victim's occupied times in school for their safety.

  • PDF

Cost-effective method for reducing local failure of floodwalls verified by centrifuge tests

  • Chung R. Song;Binyam Bekele;Brian D. Sawyer;Ahmed Al-Ostaz;Alexander Cheng;Vanadit-Ellis Wipawi
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.155-165
    • /
    • 2023
  • Hurricane Katrina swept New Orleans, Louisiana, USA, in 2005, causing more than 1,000 fatalities and severe damage to the flood protection system. Recovery activities are complete, however, clarifying failure mechanisms and devising resilient and cost-effective retrofitting techniques for the flood protection system are still of utmost importance to enhance the general structural integrity of water retaining structures. This study presents extensive centrifuge test results to find various failure mechanisms and effective retrofitting techniques for a levee system. The result confirmed the rotational failure and translational failure mechanisms for the London Ave. Canal levee and 17th St. Canal levee, respectively. In addition, it found that the floodwalls with fresh waterstop in their joints perform better than those with old/weathered waterstop by decreasing pore water pressure build-up in the levee. Structural caps placed on the top of the joints between I-walls could also prevent local failure by spreading the load to surrounding walls. At the same time, the self-sealing bentonite-sand mixture installed along the riverside of floodwalls could mitigate the failure of floodwalls by blocking the infiltration of seepage water into the gap formed between levee soils and floodwalls.

Economical Feasibility of Cultivation under Structure Due to the Introduction of New and Renewable Energy -Comparative Analysis of Wood-Pellet, Geothermal Heat and Diesel- (신재생에너지 도입에 따른 시설재배의 경제성 분석 -목재팰릿, 지열과 경유의 비교분석을 중심으로-)

  • Kim, Hyung Woo;Yoon, Sung-Yee
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.2
    • /
    • pp.255-268
    • /
    • 2014
  • We are now currently facing serious climate changes such as super typhoon, flood, intense heat, severe cold, super hurricane, drought, desertification, destruction of ecosystem, marine pollution, reduction of food production, destruction of tropical forests, exhaustion of water resources, climate refugees, etc. All of the above mainly derive from greenhouse gas exhaustion. Such harmful consequence might directly affect mankind's sustainable development. If we keep using resources that emits greenhouse gases, the global temperature will rise about $3.2^{\circ}C$ by year 2050. In case of $3^{\circ}C$ rise in temperature, it will result in abnormal climate which will bring about severe property damage. Moreover, 20~50% of the ecosystem will become extinct. As Korea's economy increasingly expands, so do our energy consumption rises. And because of the consequences that can be driven by increasing rate of resource use, not just Korea itself, but also the whole world should seriously concern about greenhouse gases. Although agricultural division only takes up about 3.2% of total greenhouse gas emission, the ministry of Agriculture, Food and Rural Affairs are taking voluntary actions to gradually reduce $CO_2$ and so does each and every related organizations. In order to reduce $CO_2$, introduction of new and renewable energy in farm house warming is crucial. In other words, implementing wood-pellet boiler and geothermal heat boiler can largly reduce $CO_2$ emission compared to diesel boiler. More importantly, not only wood-pellet and geothermal heat is pollution-free but they also have economic advantages some-what. In this thesis, the economic advantage and sustainablity will be introduced and proved through comparing practical analysis of surveyed farm house under structure employing wood-pellet boiler and geothermal heat boiler with Agriculture-Economic Statistic of 2012 who uses diesel boiler.

Detection of Fallen Pear Bags caused by Natural Disaster (자연 재해로 인하여 낙과된 무채색 배 봉지 검출)

  • Choi, Doo-Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.1
    • /
    • pp.153-158
    • /
    • 2016
  • A detection algorithm of fallen pear bags caused by natural disaster like heavy rain, typhoon, hurricane, etc. is presented in this paper. The algorithm is developed for the gray pear bags with printed characters which are widely used at pear farms at Sangju and Naju producing large quantity of pears for export. It sets a region of interest (ROI) at first and then eliminates the regions having chromatic color in ROI. Morphological operation and prior information are used to eliminate small noises and several unusual regions and finally the regions of fallen pear bags are remained. The remained regions are analyzed and counted to estimate the scale of damage. Test images are consisted of the images taken at pear farms of Sangju and Naju at 2014. Experimental result shows that the detection rate of pear bags is more than 90% and also the proposed system can be implemented in real-time using hand-held devices because of its simple and parallel architecture.