• 제목/요약/키워드: hump형 컨벌루션 입력성형기

검색결과 2건 처리시간 0.016초

파라메터 변화에 강인한 Convolution 입력성형기 설계 (Design of Robust Convolution Input Shaper for Variation of Parameter)

  • 박운환;이재원;임병덕
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.127-133
    • /
    • 2001
  • The flexibility of long reach manipulators presents a difficult control problem when accurate end-point position is required. Input shaping by convolving system commands with impulse sequences has been shown to be an effective method of reducing residual vibrations in flexible systems. However, existing shapers has been considered robustness for only frequency uncertainty. However, this paper presents new multi-hump convolution(CV) input shaper that could accommodate with the simultaneous variation of natural frequency and damping ratio. Comparisons with previously proposed input shapers are presented to illustrate the qualities of the new input shaper. These new shapers will be shown to have better robustness for the variation of frequency and damping ratio.

  • PDF

주파수와 감쇠비 변화에 강인한 Convolution 입력성형기 설계 (Design of Robust Convolution Input Shaper for the Variation of Frequency and Damping Ratio)

  • 박운환;이재원;임병덕
    • 대한기계학회논문집A
    • /
    • 제26권1호
    • /
    • pp.67-73
    • /
    • 2002
  • The flexibility of long reach manipulators presents a difficult control problem when accurate end-point position is required. Input shaping by convolving system commands with impulse sequences has been shown to be an effective method of reducing residual vibrations in flexible systems. However, existing shapers have been considered robustness fur only frequency uncertainty. However, this paper presents new multi-hump convolution(CV) input shaper that could accommodate with the simultaneous variation of natural frequency and damping ratio. Comparisons with previously proposed input shapers are presented to illustrate the qualities of the new input shaper. These new shapers will be shown to have better robustness fur the variation of frequency and damping ratio.