• Title/Summary/Keyword: humidity and temperature inside clothing

Search Result 38, Processing Time 0.022 seconds

Seasonal changes in clothing microclimate (의복기후의 계절적 변동)

  • 김양원
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2001.11a
    • /
    • pp.164-168
    • /
    • 2001
  • 의복착용시의 쾌적성은 의복의 보온력 조절에 의해 의복내 기후를 형성하여, 체온을 일정하게 유지하게 하는 역할을 하므로 건강과 직접적인 관련이 있다. 그러므로 건강이나 쾌적성 평가의 측면에서 의복내기후가 체계적으로 파악되어야 한다. 따라서 본 연구에서는 사무실 환경에서 의복착용시 착용실험을 실시하여 계절적인 의복내기후의 변동을 살펴보았다. 그 결과 겨울 31.8$^{\circ}C$, 48.6%, 봄 33.5$^{\circ}C$, 47.9%, 여름 32.7$^{\circ}C$, 64.6%, 가을 31.9$^{\circ}C$, 43.6%인 것으로 나타났다. 또한 계절간의 차이는 의복내온도에 있어서 가을과 겨울간에는 차이가 없었으며, 봄과 여름간에는 차이가 있었다. 의복내습도는 여름과 겨울간에는 차이가 없었으며, 다른 계절간에는 차이가 뚜렷하였다.

  • PDF

The effects of subcutaneos fat on the system of clothing weights (체지방률이 착의량체계에 미친 영향)

  • 김양원
    • Journal of the Korean Home Economics Association
    • /
    • v.35 no.4
    • /
    • pp.139-148
    • /
    • 1997
  • The rates of subcutaneos fat on the system of clothing weights including clothing microclimate subjective sensations were measured to get basic data to develop guideline for healthy clothing life. for this study skinfold thickness the rate of subcutaneos fot clothing microclimate subjective sensations and clothing weights were measured from 85 male and 105 female colligians. The results were as follows: 1. The rate of subcutaneos fat showed negative correlation with the temperature inside clothing in chest but not with the temperatures in back and thigh. The correlation was not significant between the rate of subcutaneos fat and humidity inside clothing 2. The correlation between the rate of subcutaneos fat and thermal sensations was positively significant at 5% level. However no correlation was found between the rate of subcutaneos fat and humid sensations. 3. There was significant correlation between the rate of subcutaneos fat and under clothing weights and total clothing weights.

  • PDF

Effect of Ondol on physiological Responses during Sleep (I) -On the focus of Bedclimate in Autumn and Winter- (온돌환경이 수면시의 생리반응에 미치는 영향(제1보) -가을, 겨울철 수면시 침실내 온열환경과 침상기후-)

  • Lee, Sun-Won;Gwon, Su-Ae;Choe, Jeong-Hwa
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.4
    • /
    • pp.697-706
    • /
    • 1996
  • The actual conditions of bed climate are investigated depending on the regions and housing styles used on ondol in autumn and winter. Sixty healthy men and women (30 of them live in apartmrnt and 30 of them live in detached house, 20 of them live in Wonju, 20 of them live in Wonju, 20 of them live in Cheongju and 20 of them live in Pusan) The results are as follows: 1) No significant differences was shown between the seasons of bedclothes thickness. 2) In the autumn, the temperature and humidity of bedroom, on the mattress, inside the bedquilt, and inside the sleep-wear were higher than those in the winter. The temperature of ondol floor and under the mattress in winter were higher than those in the autumn. 3) The differences of the temperature and humidity of bedroom, the bed climate, and the clothing microclimate were significant by the regions and housing styles in both seasons. In both seasons, the temperature of bedroom, on the mattress, inside sleep-wear in the apartment were higher than those in the detached house. 4) The differences of subjective sensation on the bedroom conditions were not significant by the sextons, the regions, and the housing styles. Most subjects perceived that the conditions of bedroom were somehow hot and dry, but comfortable.

  • PDF

A Study of Factors Influencing on Skin Temperature (피부온에 영향을 미치는 인자에 관한 연구)

  • 김명주;최정화
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.5
    • /
    • pp.726-736
    • /
    • 1999
  • The purpose of this study was to obtain the basal information for standard amount of clothing weight indoor climate and working condition with investigating seasonal changes of skin temperature and factors influencing on that in Koreans. Forty eight subjects in 5 age groups(6-11, 12-19, 20-44, 45-64, 65-76 years old) with both sexs were measured skin temperature indoor climate clothing microclimate clothing weight and skinfold thickness in neutral condition in each month throughout the year. The results obtained are summarized as follows : 1. Indoor climate koreans felt comfortable ranged 18.1-28.7$^{\circ}C$ and 51-74%RH. 2. Temperature inside the clothing ranged 30.8-32.3$^{\circ}C$ in males and 31.0-32.5$^{\circ}C$in females. There was a significant difference in temperature inside the clothing among age groups : That of 6019 age group was slightly higher than that at 45-76 age group. 3. Total clothing weight changed with season and increased in order of summer autumn spring and winter Total clothing weight of 65-76 age group was significantly greater on January and February. Breast skinfold thickness showed the smallest value in summer and the largest value in winter year. In addition to breast and abdomen skinfold thickness were larger in 45-67 age group while thigh skinfold thickness was larger in 6-19 age group. Skinfold thickness in females showed the smallest value in spring summer and the largest value in autumn and winter. In addition to triceps and suprailliac skinfold thickness were larger in 45-64 age group while thigh skinfold thickness was larger in 12-19 age goup. 5. Temperature of the lower limbs(hand, thigh. leg, and foot) showed significant correlation with the indoor temperature humidity inside clothing and total clothing weight. Temperature of the torso(breast and abdomen) showed significant correlation with the temperature inside clothing in all subjects. Abdomen skinfold thickness of all age group in male showed significant correlation with the abdomen skin temperature. triceps suprailliac and thigh skinfold thickness of 6-11 age group in female showed significant correation the upperarm abdomen and thigh skin temperature. Consequently clothing mdicroclimate total clothing weight and skinfold thickness showed significant difference in season sex and ages and had a slight effect on skin temperature.

  • PDF

Thermal Comfort Evaluation of Protective Clothing for Shielding Electromagnetic Waves (전자파 차단 보호복의 온열쾌적성 평가)

  • Choi, Jeong-Wha;Kim, Myung-Ju;Park, Joon-Hee;Kim, Do-Hee
    • The Korean Journal of Community Living Science
    • /
    • v.21 no.4
    • /
    • pp.595-603
    • /
    • 2010
  • The present study was performed on humans to investigate the physiological strain of wearing protective clothing for shielding electromagnetic waves and to compare control clothing that are currently on the market and new clothing that are developed for improving thermal comfort and material weight. Experiments were conducted in a climatic chamber of $28.8{\pm}0.6^{\circ}C$, $37{\pm}5%$RH under three differed experimental clothing conditions: None, Control, New. The results were as follows. Mean skin temperature and rectal temperature in New were significantly lower than that in None and Control (p<.05). The temperature and humidity inside clothing were lower in None (p<.05). Total weight loss was lower in New. Thermal sensation and thermal comfort were less hot and more comfortable in New than those in Control. It was concluded that wearing the protective clothing for shielding electromagnetic waves affects physiological responses such as distribution of body temperature, sweat rate, etc.

Thermo Physiological responses of Far Infrared Ray Radiation Fabrics at outdoor in summer (옥외에서 원적외선 방사직물 착용시 온열생리반응)

  • 송명견;안필자;최정화
    • Korean Journal of Rural Living Science
    • /
    • v.7 no.2
    • /
    • pp.121-128
    • /
    • 1996
  • This study was performed to define the effects of Far Infrared Ray Radiation Fabrics as summer garments during outdoor work by human trial. One healthy male subject was volunteered for this study. Experimental garments consisted of three kinds of trousers (Cotton, Cotton/linen blended, Far Infrared Ray Radiation Fabric/wool blended) and basic garments (panty, socks, shirts, and dress shirts). The measurements were rectal temp., skin temp., microclimate inside clothing, heart rate, subjective sensation etc. The results were as follows : 1. Rectal temperature showed the lowest in Far Infrared Ray Radiation Fabrics among 3 garments. 2. Skin temperature (forehead, chest abdomen temp.) and mean skin temperature were lower in Far Infrared Ray Radiation Fabrics than in others, especially during early stage of work. 3. Heart rate showed lower value in Far Infrared Ray Radiation Fabrics than in others but there was no significance among the garments. 4. Humidity inside clothing and total weight loss showed the highest value in Far Infrared Ray Radiation Fabrics.

  • PDF

Evaluation of the thermal environments and the workload of farmers during the spraying pesticide in the rice field (농약 방제 작업자의 작업 환경 및 노동 부담 평가)

  • 최정화;이주영
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.11
    • /
    • pp.1672-1681
    • /
    • 2002
  • To evaluate the thermal environments and the workload of farmers in the rice field in summer, this study investigated rice farmers' physiological, psychological responses, work postures, work clothes, air temperature and air humidity during the spraying pesticide in the rice field. Five career farmers (3 males, 2 females) volunteered as the subjects. During the spraying pesticide in the rice field, physiological responses were monitored continuously. The results were as follows. l. Farmers wore only raincoats not pesticide-proof clothing. 2. The value of WBGT, rectal temperature($T_{re}$), mean skin temperature(${\={T}}_{sk}$) were $24.9∼28.9^{\circ}C,\;37.8({\pm}0.3)^{\circ}C\;and\;33.6({\pm}0.6)^{\circ}C$, respectively. Clothing microclimate temperature($T_{cl}$) on the chest and back were $32.5({\pm}2.6)^{\circ}C\;and\;33.6({\pm}2.6)^{\circ}C$, respectively(p<0.00l). Humidity inside of the clothing ($H_{cl}$) was over 80%RH and heart rate(HR) was 112(${\pm}27$)bpm. We evaluated that the spraying pesticide was 'heavy work' by the Tre and HR. To four subjective questionnaires, all farmers expressed 'hard, hot, humid and uncomfortable' without individual difference at the end of works. We suggested that 1) the spraying pesticide in the rice field was a heavy work, 2) because the workload of farmers in the raincoat/pesticide-proof clothing can't be evaluated by only WBGT, assessors should measure physiological, psychological responses as well as thermal environments, 3) to alleviate farmers' heat strain, clothing manufacturers must consider not only the improvement of textile materials and clothing weight but also the designing of personal cooling equipment.

Development of Thermoregulating Textile Materials with Microencapsulated Phase Change Materials(PCM) -Wearing comfort of the developed thermoregulating textile materials- (PCM 마이크로캡슐을 이용한 열조절 섬유소재 개발 -열조절 섬유소재의 착용효과-)

  • 신윤숙;정영옥;전향란;손경희;김성희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.6
    • /
    • pp.767-775
    • /
    • 2004
  • In order to evaluate physiological responses and comfort sensation of the developed thermoregulating textile material, polyester knit fabric was treated with phase change material (PCM) microcapsules by printing. Ten male subjects wearing an experimental best with and without PCMs were seated for 20 minutes, then exercised for 20 minutes, and then seated for 30 minutes in the chamber which was controlled under the temperatures of 20$\pm$1$^{\circ}C$, 50$\pm$5%R.H. The subject's skin temperature, microclimate inside garment and comfort sensation of two experimental bests were compared one another. As a result, the rectal temperature, skin temperature and mean skin temperature were similar in the two groups, and the subjects were not able to perceive the differences in comfort of the two experimental bests. However, the effect of PCM microcapsule could be seen from microclimate temperature and humidity. The microclimate temperature of the PCM garment at chest was significantly higher during exercise. The microclimate humidity of the PCM garment at chest was significantly lower during exercise and rest.

A Study on Bedclimate, Physiological Responces and Subjective Sensations of Bedquilts During Sleeping on Ondol in Summer (여름철 온돌에서 취침시 이불종류에 따른 침상기후와 인체반응 연구)

  • Kweon Soo Ae;Lee Soon Won;Choi Jeong Wha
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.16 no.3 s.43
    • /
    • pp.285-298
    • /
    • 1992
  • In this study, bedclimate was investigated depending on various bedquilts used oin ondol in summer. The environmental room condition was maintained at 26: $1^{\circ}C,\;75{\pm}3\%$ R.H., while the ondol surface was kept at $25{\pm}1^{\circ}C$ without heating. The types of bedquilts were hemp, cotton, quilt made of polyester padding with polyester/cotton cover. Two healthy young women were subjected for seven hours' sleep with two replications for this study. The results are as follows. 1) The range of the temperature under the mattress ($25.2\~32.4^{\circ}C$) was lower than that of the temperature on the mattress ($28.8\~35.5^{\circ}C$), or that of the temperature inside the bedquilts ($30.3\~34.4^{\circ}C$). The humidity inside the bedquilts increased during sleeping, and the range of R.H. was $58\~80\%$. 2) The ranges of bedclimate which subjects feel comfortable were $30.5\~33.8^{\circ}C$ on the mattress, $31.0\~34.9^{\circ}C$, $61\~74\%$ R.H. inside the bedquilts. At this range, the mean skin temper-ature of the subjects was $34.3^{\circ}C\~35.2^{\circ}C$. 3) When there was no heating, the weight of the bedding increased during sleeping, and the weight increase was largest in the case of mattress. 4) There were correlations among the skin temperature of three points of the body (abdomen, thigh, foot) and the temperature and R.H. inside the bedquilt. 5) The effect of the type of bedquilts on the microclimate and physiolosical responses were significant. 6) Generally, when there was no heating, the body heat was transferred to the ondol floor, in summer, heat was transferred mostly through the mattress.

  • PDF

A Study on the Comfortable Pesticide-Proof Clothes (농약방제복 개발에 관한 연구)

  • Choi Jeong Wha;Kim Hyun Sik;Jeong Yong Ok
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.11 no.2 s.24
    • /
    • pp.91-100
    • /
    • 1987
  • To develop the comfortable pesticid-proof clothes, wearing trials for 7 types of existing pesticide-proof clothes were done measuring skin temperature, pulse rate, humidity and temperature of inside clothing and subjective feeling such as thermal, humid and comfort sensations at $28{\pm}1^{\circ}C$, $75{\pm}5\%$ RH, 2.3 m/sec wind speed. (Experiment 1). On the base of above results, wearing trials of 6 types of new pesticide-proof clothes and 3 types of pesticide-proof clothes as control group were done with the same method as experiment 1. (Experiment 2). The results obtained were as follows 1. Heat stress was lower in newly designed pesticide-proof clothes with mesh running shirts. 2. For the body temperature regulation, it was confirmed that 6 types of new pesticide-proof clothes made of microporous fabric were better than the others.

  • PDF