• Title/Summary/Keyword: human-body model

Search Result 884, Processing Time 0.031 seconds

Human Motion Control Using Dynamic Model (동력학 모델을 이용한 인체 동작 제어)

  • Kim, Chang-Hoe;O, Byeong-Ju;Kim, Seung-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.141-152
    • /
    • 1999
  • In this paper, We performed the human body dynamic modelling for the realistic animation based on the dynamical behavior of human body, and designed controller for the effective control of complicate human dynamic model. The human body was simplified as a rigid body which consists of 18 actuated degrees of freedom for the real time computation. Complex human kinematic mechanism was regarded as a composition of 6 serial kinematic chains : left arm, right arm, support leg, free leg, body, and head. Based on the this kinematic analysis, dynamic model of human body was determined using Newton-Euler formulation recursively. The balance controller was designed in order to control the nonlinear dynamics model of human body. The effectiveness of designed controller was examined by the graphical simulation of human walking motion. The simulation results were compared with the model base control results. And it was demonstrated that, the balance controller showed better performance in mimicking the dynamic motion of human walking.

  • PDF

Generation of Parametric Human Body Segment Models Using Korean Anthropometric Data (한국인의 인체측정 데이터를 이용한 파라메트릭 인체분절모델 생성)

  • Koo, Bon-Yeol;Choi, Myeong-Hwan;Chae, Je-Wook;Kim, Jay-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.6
    • /
    • pp.424-436
    • /
    • 2011
  • In this paper, we propose a methodology of generating a parametric segment model for human body using the Korean anthropometric data. The model is defined as an articulated body model consisted with 19 ellipsoid primitives. The primitives are joined at locations representing the physical joints of human body. A lot of previous researches have suggested methodologies of generating body models using the European or American anthropometric data, so that these models were inappropriate for engineering analyses and simulations in case of the Koreans. We defined a set of 35 body dimensions representing our segment model based on the anthropometric data of Koreans. Also we defined four key parameters of age, height, weight and waist circumference, and then we applied regression equations to associate the parameters to the aforementioned dimensions. As the results, we obtained the parametric human body segment models according to the various body types and the subject-specific models for a specific individual. The models in the various industries can be used as the base models for static and dynamic analysis considering the Koreans.

Synthesis of Human Body Shape for Given Body Sizes using 3D Body Scan Data (3차원 스캔 데이터를 이용하여 임의의 신체 치수에 대응하는 인체 형상 모델 생성 방법)

  • Jang, Tae-Ho;Baek, Seung-Yeob;Lee, Kun-Woo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.6
    • /
    • pp.364-373
    • /
    • 2009
  • In this paper, we suggest the method for constructing parameterized human body model which has any required body sizes from 3D scan data. Because of well developed 3D scan technology, we can get more detailed human body model data which allow to generate precise human model. In this field, there are a lot of research is performed with 3D scan data. But previous researches have some limitations to make human body model. They need too much time to perform hole-filling process or calculate parameterization of model. Even more they missed out verification process. To solve these problems, we used several methods. We first choose proper 125 3D scan data from 5th Korean body size survey of Size Korea according to age, height and weight. We also did post process, feature point setting, RBF interpolation and align, to parameterize human model. Then principal component analysis is adapted to the result of post processed data to obtain dominant shape parameters. These steps allow to reduce process time without loss of accuracy. Finally, we compare these results and statistical data of Size Korea to verify our parameterized human model.

Analysis on Electric Shock Current in DC Electricity (직류환경에서 인체에 흐르는 감전전류 분석)

  • Lee, Jin-Sung;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.254-259
    • /
    • 2016
  • Recently, DC distribution systems have become a hot issue because of the increase in digital loads and DC generation systems according to the expansion of renewable energy technologies. To obtain the practical usage of DC electricity, safety should be guaranteed. The main concerns for safety are twofold: one side is human protection against electric shocks, and the other is facility protection from short faults. "Effects of current on human beings and livestock" (IEC 60479) defines a human body impedance model in electric shock conditions that consists of resistive components and capacitive components. Although the human body impedance model properly works in AC electricity, it does not well match with the electric shock behavior in DC electricity. In this study, the contradiction of the human body impedance model defined by IEC 60479 in case of DC electricity is shown through experiments for the human body. From the analysis of experimental results, a novel unified human body impedance model in electric shock conditions is proposed. This model consists of resistive components, capacitive components, and an inductance component. The proposed human impedance model matches well for AC and DC electricity environments in simulation and experiment.

Comparison and Analysis for Evaluation of Ride and SEAT Index through Theoretical Seat-Human Body Model and Vehicle Test (시트-인체 해석 모델링과 차량 주행 시험을 통한 차량 승차감 평가와 시트 지수의 비교 및 분석)

  • Son, In-Suk;Kim, Jung-Hoon;Kang, Yeon-June
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.1-9
    • /
    • 2009
  • A simplified model of seat-human body is presented to analyze vibrations of human body on a seat of vehicle. The theoretical model having seven degrees-of-freedom is composed of the inter-connected masses, springs and dampers. Until now, evaluation of ride comfort has been usually performed only through vehicle tests. This study aims to complement shortcomings of conventional vehicle tests in evaluation of ride comfort by using the theoretical model. The acceleration values of the human body are obtained from frequency response functions of the theoretical model. Thereafter, Ride and SEAT indexes are acquired by considering response characteristics of the human body for the 12 axes that are presented in BS 6841. A vehicle test is carried out to measure the acceleration values for the three parts of the human body such as upper body, hip and foot. Ride and SEAT indexes of the vehicle test are also obtained by considering the response characteristics of the human body, of which results are compared with the values from the theoretical model. It is found that the theoretical results are in good agreement with the experimental results.

A Study of Human Model Based on Dynamics (동력학기반 인체 모델 연구)

  • 김창희;김승호;오병주
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.485-493
    • /
    • 1999
  • Human can generate various posture and motion with nearly 350 muscle pairs. From the viewpoint of mechanisms, the human skeleton mechanism represents great kinematic and dynamical complexity. Physical and behavioral fidelity of human motion requires dynamically accurate modeling and controling. This paper describes a mathematical modeling, and dynamic simulation of human body. The human dynamic model is simplified as a rigid body consisting of 18 actuated degrees of freedom for the real time computation. Complex kinematic chain of human body is partitioned as 6 serial kinematic chains that is, left arm, right arm, support leg, free leg, body, and head. Modeling is developed based on Newton-Euler formulation. The validity of proposed dynamic model, which represents mathematically high order differential equation, is verified through the dynamic simulation.

  • PDF

Landing Motion Analysis of Human-Body Model Considering Impact and ZMP Condition (충격과 ZMP 조건을 고려한 인체 모델의 착지 동작 해석)

  • So Byung Rok;Kim Wheekuk;Yi Byung-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.6
    • /
    • pp.543-549
    • /
    • 2005
  • This paper deals with modeling and analysis fer the landing motion of a human-body model. First, the dynamic model of a floating human body is derived. The external impulse exerted on the ground as well as the internal impulse experienced at the joints of the human body model is analyzed. Second, a motion planning algorithm exploiting the kinematic redundancy is suggested to ensure stability in terms of ZMP stability condition during a series of landing phases. Four phases of landing motion are investigated. In simulation, the external and internal impulses experienced at the human joints and the ZMP history resulting from the motion planning are analyzed for two different configurations. h desired landing posture is suggested by comparison of the simulation results.

Standard Terminology System Referenced by 3D Human Body Model

  • Choi, Byung-Kwan;Lim, Ji-Hye
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.2
    • /
    • pp.91-96
    • /
    • 2019
  • In this study, a system to increase the expressiveness of existing standard terminology using three-dimensional (3D) data is designed. We analyze the existing medical terminology system by searching the reference literature and perform an expert group focus survey. A human body image is generated using a 3D modeling tool. Then, the anatomical position of the human body is mapped to the 3D coordinates' identification (ID) and metadata. We define the term to represent the 3D human body position in a total of 12 categories, including semantic terminology entity and semantic disorder. The Blender and 3ds Max programs are used to create the 3D model from medical imaging data. The generated 3D human body model is expressed by the ID of the coordinate type (x, y, and z axes) based on the anatomical position and mapped to the semantic entity including the meaning. We propose a system of standard terminology enabling integration and utilization of the 3D human body model, coordinates (ID), and metadata. In the future, through cooperation with the Electronic Health Record system, we will contribute to clinical research to generate higher-quality big data.

Analysis on Active spring effect in human-body having redundant actuation with application to motion frequency (여유구동을 지닌 인체의 능동스프링 현상에 대한 해석과 운동주파수 제어방식으로의 적용)

  • Yi, Byung-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.8
    • /
    • pp.977-989
    • /
    • 1999
  • The purpose of this study is to analyze how the human body having more muscles than its degree-of-freedom modulates an effective stiffness using redundant actuation, and to apply this concept to the design and control of advanced machines which requires adaptable spring. To investigate the adaptable stiffness phenomenon due to redundant actuation in the human body, this paper derives a general stiffness model of the Human body. In particular, for a planar 1 DOF human arm model, a planar 2 DOF human arm model, a spherical 3 DOF shoulder model, a 4 DOF human arm model, and a 7 DOF human arm model, the required nonlinear geometry ad the number of required actuator for successful modulation of the effective stiffness are analyzed along with a load distribution method for modulation of the required stiffness of such systems. Secondly, the concept of motion frequency modulation is introduced to show the usefulness of adaptive stiffness modulation. The motion frequency modulation represents a control of stiffness and / or inertia properties of systems. To show the effectiveness of the proposed algorithm, simulations are performed for 2 DOF anthropomorphic robot.

  • PDF

Pictorial Model of Upper Body based Pose Recognition and Particle Filter Tracking (그림모델과 파티클필터를 이용한 인간 정면 상반신 포즈 인식)

  • Oh, Chi-Min;Islam, Md. Zahidul;Kim, Min-Wook;Lee, Chil-Woo
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.186-192
    • /
    • 2009
  • In this paper, we represent the recognition method for human frontal upper body pose. In HCI(Human Computer Interaction) and HRI(Human Robot Interaction) when a interaction is established the human has usually frontal direction to the robot or computer and use hand gestures then we decide to focus on human frontal upper-body pose, The two main difficulties are firstly human pose is consist of many parts which cause high DOF(Degree Of Freedom) then the modeling of human pose is difficult. Secondly the matching between image features and modeling information is difficult. Then using Pictorial Model we model the human main poses which are mainly took the space of frontal upper-body poses and we recognize the main poses by making main pose database. using determined main pose we used the model parameters for particle filter which predicts the posterior distribution for pose parameters and can determine more specific pose by updating model parameters from the particle having the maximum likelihood. Therefore based on recognizing main poses and tracking the specific pose we recognize the human frontal upper body poses.

  • PDF