• Title/Summary/Keyword: human walking

검색결과 492건 처리시간 0.024초

헛디딤 보행특성과 3 차원 모의해석결과 비교 (Comparison of Three-Dimensional Dynamic Simulation with Falling Gait Analysis)

  • 명성식;금영광;황성재;김한성;김영호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.359-363
    • /
    • 2004
  • Numerous studies have been performed to analyze various phenomena of human's walking, gait. In the present study, unrecognized walking and recognized walking were analyzed by three dimensional motion capture system(VICON motion system Ltd., England) and simulated by computer program. Two normal males participated in measuring the motion of unrecognized and recognized walking. Six infrared cameras and four force plates were used and sixteen reflective markers were attached to the subject to capture the motion. A musculoskeletal model was generated anatomically by using ADAMS(MSC software corp., USA) and LifeMOD(Biomechanics Research Group Inc, USA). The inverse dynamic simulation and forward dynamic simulation were also performed. The result of simulation was similar to the experimental result. This study provides the base line for dynamic simulation of the falling walking. It will be useful to simulate various another pathologic gaits for old peoples.

  • PDF

Open Inventor를 이용한 이족보행로봇의 시뮬레이터의 개발 (Development of a Simulator for the biped-walking robot using the open inventor)

  • 최형식;김영식;전대원;우정재;김명훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.296-299
    • /
    • 2001
  • We developed a motion capture system to get angle data of human joints in the walking mode. The motion capture system is a pair of leg-shape device, which is composed of three links with ankle, knee and pelvis joints. The sensors for measurement of the joint angle are potentiometers. We used an A/D converter to get digital data from joint angles, and which are used to simulate and coordinate the biped-walking robot developed in our laboratory. To simulate and analyze walking motion, animation based on three-dimension motion is performed using the open inventor software.

  • PDF

최적 보행 동작 구현을 위한 시뮬레이션 기반 Jansen Mechanism 활용 보행 로봇 설계 및 구현. (Simulation-based Jansen mechanism utilizing walking robot of the design and implementation in order to implement the best walking movement.)

  • 김희찬;김승하
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.467-468
    • /
    • 2016
  • The importance of the recent manufacturing industry have been made to invest in a lot of assistance and human resource development at the national dimension in which to rise again. However Learned in actual school education kinetic, and the use to how product design structural knowledge, Often it feels vague unlikely whether it is possible to derive an optimal product. In this study, by using the simulation-based Jansen Mechanism designed a walking robot, after optimization of the numerical consideration when designing for optimum walking motion, through simulation through the actual production resulting numerical information is examined whether valid. In addition, through the actual production was walking robot, to verify the validity of the simulation-based design.

  • PDF

Gate Data Gathering in WiFi-embedded Smart Shoes with Gyro and Acceleration Sensor

  • Jeong, KiMin;Lee, Kyung-chang
    • 한국산업융합학회 논문집
    • /
    • 제22권4호
    • /
    • pp.459-465
    • /
    • 2019
  • There is an increasing interest in health and research on methods for measuring human body information. The importance of continuously observing information such as the step change and the walking speed is increasing. At a person's gait, information about the disease and the currently weakened area can be known. In this paper, gait is measured using wearable walking module built in shoes. We want to make continuous measurement possible by simplifying gait measurement method. This module is designed to receive information of gyro sensor and acceleration sensor. The designed module is capable of WiFi communication and the collected walking information is stored in the server. The information stored in the server is corrected by integrating the acceleration sensor and the gyro sensor value. A band-pass filter was used to reduce the error. This data is categorized by the Gait Finder into walking and waiting states. When walking, each step is divided and stored separately for analysis.

한국 인명안전기준 구축을 위한 군집보행속도에 관한 실험적 연구 (An Experimental Study on the Walking Speed of Crowd for Development of Korea Life Safety Code)

  • 구인혁;김혜원;진승현;이병흔;권영진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.45-46
    • /
    • 2021
  • This study conducted an experiment on the crowd walking speed, one of the factors for calculating the evacuation capacity of a building. The experiment was measured the crowd walking speed by factor of corridor width and Vulnerable People to Disaster. The result of experiment, it saw the decrease of crowd walking speed due to rate of Vulnerable People to Disaster. In the future, using this as basic data, it is considered that additional research is need to development Human Safetay Standards in Korea.

  • PDF

보행 모의 실험을 위한 발목 없는 하지 외골격 로봇의 지면 접촉 모델 최적화 (Optimization of Ground Contact Model of Ankleless Lower Exoskeleton Robot for Gait Simulation)

  • 최기명;김상형;조창현
    • 로봇학회논문지
    • /
    • 제18권4호
    • /
    • pp.481-486
    • /
    • 2023
  • The purpose of this study is to optimize parameters of a contact model to obtain similar ground contact force of human walking. Dynamic walking simulation considering ground contact is performed to determine load specifications when developing walking assist robots. Large contact forces that are not observed in actual experimental data occur during the simulation at the initial contact (e.g., heel contact). The large contact force generates unrealistic large joint torques. A lower exoskeleton robot with no ankles is developed with the Matlab simscape and the nonlinear hyper volumetric contact model is applied. Parameters of the nonlinear hyper volumetric model were optimized using actual walking contact force data. As a result of optimization, it was possible to obtain a contact force pattern similar to actual walking by removing the large contact force generated during initial contact.

유전알고리즘을 이용한 사족 보행로봇의 인간친화동작 구현 (The Implementation of Human-Interactive Motions for a Quadruped Robot Using Genetic Algorithm)

  • 공정식;이인구;이보희
    • 제어로봇시스템학회논문지
    • /
    • 제8권8호
    • /
    • pp.665-672
    • /
    • 2002
  • This paper deals with the human-interactive actions of a quadruped robot by using Genetic Algorithm. In case we have to work out the designed plan under the special environments, our robot will be required to have walking capability, and patterns with legs, which are designed like gaits of insect, dog and human. Our quadruped robot (called SERO) is capable of not only the basic actions operated with sensors and actuators but also the various advanced actions including walking trajectories, which are generated by Genetic Algorithm. In this paper, the body and the controller structures are proposed and kinematics analysis are performed. All of the suggested motions of SERO are generated by PC simulation and implemented in real environment successfully.

Gait Pattern Generation Algorithm for a Biped Robot with Toes

  • Min, Kwan-Sik;Ahn, Cheol-Ki;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.107.4-107
    • /
    • 2002
  • One of the most important functions of a biped robot is to walk naturally like human. For the human being, toe is very important joint in order to walk naturally. Thus, for a biped robot, the existence of toe joint much affects gait pattern generation and contributes to natural walking, which is similar to the human gait or faster walking like running. Since a conventional biped robot has the feet which consist of soles without toes, it seems difficult to walk naturally. For realizing the gait to be similar to human one, toes are necessary to the biped robot. In this paper, the effect of the toe joint for gait pattern generation is studied. In order to find the effect of toe joint, a biped r...

  • PDF

인류 보행의 진화: 컴퓨터 시뮬레이션 연구 (Evolution of Human Locomotion: A Computer Simulation Study)

  • 엄광문;하세카즈노리
    • 한국정밀공학회지
    • /
    • 제21권5호
    • /
    • pp.188-202
    • /
    • 2004
  • This research was designed to investigate biomechanical aspects of the evolution based on the hypothesis of dynamic cooperative interactions between the locomotion pattern and the body shape in the evolution of human bipedal walking The musculoskeletal model used in the computer simulation consisted of 12 rigid segments and 26 muscles. The nervous system was represented by 18 rhythmic pattern generators. The genetic algorithm was employed based on the natural selection theory to represent the evolutionary mechanism. Evolutionary strategy was assumed to minimize the cost function that is weighted sum of the energy consumption, the muscular fatigue and the load on the skeletal system. The simulation results showed that repeated manipulations of the genetic algorithm resulted in the change of body shape and locomotion pattern from those of chimpanzee to those of human. It was suggested that improving locomotive efficiency and the load on the musculoskeletal system are feasible factors driving the evolution of the human body shape and the bipedal locomotion pattern. The hypothetical evolution method employed in this study can be a new powerful tool for investigation of the evolution process.

TRT Pose를 이용한 모바일 로봇의 사람 추종 기법 (Development of Human Following Method of Mobile Robot Using TRT Pose)

  • 최준현;주경진;윤상석;김종욱
    • 대한임베디드공학회논문지
    • /
    • 제15권6호
    • /
    • pp.281-287
    • /
    • 2020
  • In this paper, we propose a method for estimating a walking direction by which a mobile robots follows a person using TRT (Tensor RT) pose, which is motion recognition based on deep learning. Mobile robots can measure individual movements by recognizing key points on the person's pelvis and determine the direction in which the person tries to move. Using these information and the distance between robot and human, the mobile robot can follow the person stably keeping a safe distance from people. The TRT Pose only extracts key point information to prevent privacy issues while a camera in the mobile robot records video. To validate the proposed technology, experiment is carried out successfully where human walks away or toward the mobile robot in zigzag form and the robot continuously follows human with prescribed distance.