본 논문에서는 모델 기반으로 추정한 사람의 시선 방향을 이용하여 실내 환경에서 발생 할 수 있는 사람의 행동을 인식하는 방법을 제안한다. 제안하는 방법은 크게 두 단계로 구성된다. 첫째, 행동 인식을 위한 사전 정보를 얻는 단계로 사람의 머리 영역을 검출하고 시선 방향을 추정한다. 사람의 머리 영역은 색상 정보와 모양 정보를 이용하여 검출하고, 시선 방향은 머리와 얼굴의 관계를 표현한 베이지안 네트워크 모델을 이용하여 추정한다. 둘째, 이벤트와 사람의 행동을 나타내는 시나리오를 인식하는 단계이다. 이벤트는 사람의 상태 변화로 인식하고, 시나리오는 이벤트들의 조합과 제약 사항을 이용하여 규칙 기반으로 인식한다. 본 논문에서는 시선방향과 연관이 있는 4 가지의 시나리오를 정의하여 실험 한다. 실험을 통해 시선 방향 추정의 성능과 시선 방향이 고려된 상황에서의 행동 인식 성능을 보인다.
영상 기반의 모션 캡처에 대한 연구는 인체의 특징 영역 검출, 정확한 자세 추정 및 실시간 성능 등의 문제를 풀기 위해 많은 연구가 진행되고 있다. 특히, 인체의 많은 관절 정보를 복원하기 위해 다양한 방법이 제안되고 있다. 본 논문에서는 수치적인 역운동학 방법의 단점을 개선한 실시간 모션 캡처 방법을 제안한다. 기존의 수치적인 역운동학 방법은 많은 반복 연산이 필요하며, 국부최소치 문제가 발생할 수 있다. 본 논문에서는 이러한 문제를 해결하기 위해 기존의 수치적인 역운동학 해법과 UKF를 결합하여 중간관절을 복원하는 방법을 제안한다. 수치적인 역운동학의 해와 UKF를 결합함으로써, 중간 관절 추정 시 최적값에 보다 안정적이고 빠른 수렴이 가능하다. 모션 캡처를 위해 먼저, 배경 차분과 피부색 검출 방법을 이용하여 인체의 특징 영역을 추출한다. 다수의 카메라로부터 추출된 2차원 인체 영역 정보로부터 3차원 정보를 복원하고, UKF와 결합된 수치적인 역운동학 해법을 통해 동작자의 중간 관절 정보를 추정한다. 수치적인 역운동학의 해는 UKF의 상태 추정 시 안정적인 방향을 제시하고, UKF는 다수의 샘플을 기반으로 최적 상태를 찾음으로써, 전역해에 보다 빠르게 수렴한다.
The biological wastewater treatment plant, which uses microbial community to remove organic matter and nutrients in wastewater, is known as its nonlinear behavior and uncertainty to operate. Therefore, operation of the biological wastewater treatment process much depends on observation and knowledge of operators. The manual inspection of human operators is essential to manage the process properly, however, it is impossible to detect a fault promptly so that the process can be exposed to improper condition not securing safe effluent quality. Among various process faults, equipment malfunction is critical to maintain normal operational state. To detect equipment faults automatically, the dynamic time warping was tested using on-line oxidation-reduction potential (ORP) and dissolved oxygen (DO) profiles in a sequencing batch reactor (SBR), which is a type of wastewater treatment process. After one cycle profiles of ORP and DO were measured and stored, they were warped to the template profiles which were prepared already and the distance result, accumulated distance (D) values were calculated. If the D values were increased significantly, some kinds of faults could be detected and an alarm could be sent to the operator. By this way, it seems to be possible to make an early detecting of process faults.
A rapid and sensitive method has been developed to detect hepatitis B virus DNA (HBV) by nested polymerase chain reaction (PCR) technique with primers specific for the surface and core regions in capillary thermal cycler within 80 min. The lower limit for detection by present PCR method is $10^{-5}$ pg of recombinant HBV DNA which is equivalent to that determined by one round of PCR amplification and Southern blot hybridization analysis. When boiled HBV positive serum was serially diluted 10-fold, HBV DNA was successfully determined in $1{\mu}l-10^{-3}$ of serum. HBV DNA was detected by present method in 69 clinical samples including HBsAg positives and negatives by enzyme-linked immunosorbent assay (ELISA). When serum samples were amplified by nested PCR using surface and core region primers, HBV DNAs were detected in 37 of 69 samples (53.6%) and 18 of 69 samples (26.1%), respectively. These results can inform the infectious state of HBsAg positive pateints. A simple and rapid nested PCR protocol by using boiled serum as DNA template has been described for the clinical utility to determine HBV DNA in human serum.
In this paper, we introduce fuzzy algorithm similar to human's way of thinking and designed collision detection system of vehicles. First, before the model vehicles design, we did simulation collision detection using PID and Fuzzy Controller. As a result, P.O that is Percent Overshoot when make use of PID controller happened from smallest 32% to 45%. But, In case of using fuzzy controller they produced about 10% in 7% in case use 25 rule. We designed model vehicles that introduce Auto Guided Vehicle(AGV) with confirmed result in simulation. We set Polaroid 6500 sensor on the front of model automobile because distinguish existence automobile to the head. And we composed motor drive part to run vehicles and 80C196KC processor for control movement of vehicles influenced on distance data of the front vehicles that receive from supersonic waves sensor. In case of using Fuzzy controller, last value percent error happened about maximum 15% in smallest 5%, and we confirmed that distance with front vehicles kept when state hold time is about maximum 16 seconds in smallest 10 seconds.
The Activity patterns of animal species are difficult to access and the behavior of freely moving individuals can not be assessed by direct observation. As it has become large challenge to understand the activity pattern of animals such as dogs, and cats etc. One approach for monitoring these behaviors is the continuous collection of data by human observers. Therefore, in this study we assess the activity patterns of dog using the wearable sensors data such as accelerometer and gyroscope. A wearable, sensor -based system is suitable for such ends, and it will be able to monitor the dogs in real-time. The basic purpose of this study was to develop a system that can detect the activities based on the accelerometer and gyroscope signals. Therefore, we purpose a method which is based on the data collected from 10 dogs, including different nine breeds of different sizes and ages, and both genders. We applied six different state-of-the-art classifiers such as Random forests (RF), Support vector machine (SVM), Gradient boosting machine (GBM), XGBoost, k-nearest neighbors (KNN), and Decision tree classifier, respectively. The Random Forest showed a good classification result. We achieved an accuracy 86.73% while the detecting the activity.
Objective: The aim of this study is to compare results of emotion recognition by several algorithms which classify three different emotional states(happiness, neutral, and surprise) using physiological features. Background: Recent emotion recognition studies have tried to detect human emotion by using physiological signals. It is important for emotion recognition to apply on human-computer interaction system for emotion detection. Method: 217 students participated in this experiment. While three kinds of emotional stimuli were presented to participants, ANS responses(EDA, SKT, ECG, RESP, and PPG) as physiological signals were measured in twice first one for 60 seconds as the baseline and 60 to 90 seconds during emotional states. The obtained signals from the session of the baseline and of the emotional states were equally analyzed for 30 seconds. Participants rated their own feelings to emotional stimuli on emotional assessment scale after presentation of emotional stimuli. The emotion classification was analyzed by Linear Discriminant Analysis(LDA, SPSS 15.0), Support Vector Machine (SVM), and Multilayer perceptron(MLP) using difference value which subtracts baseline from emotional state. Results: The emotional stimuli had 96% validity and 5.8 point efficiency on average. There were significant differences of ANS responses among three emotions by statistical analysis. The result of LDA showed that an accuracy of classification in three different emotions was 83.4%. And an accuracy of three emotions classification by SVM was 75.5% and 55.6% by MLP. Conclusion: This study confirmed that the three emotions can be better classified by LDA using various physiological features than SVM and MLP. Further study may need to get this result to get more stability and reliability, as comparing with the accuracy of emotions classification by using other algorithms. Application: This could help get better chances to recognize various human emotions by using physiological signals as well as be applied on human-computer interaction system for recognizing human emotions.
One of the most frequently performed tasks in human-robot interaction (HRI), intelligent vehicles, and security systems is face related applications such as face recognition, facial expression recognition, driver state monitoring, and gaze estimation. In these applications, accurate head pose estimation is an important issue. However, conventional methods have been lacking in accuracy, robustness or processing speed in practical use. In this paper, we propose a novel method for estimating head pose with a monocular camera. The proposed algorithm is based on a deep neural network for multi-task learning using a small grayscale image. This network jointly detects multi-view faces and estimates head pose in hard environmental conditions such as illumination change and large pose change. The proposed framework quantitatively and qualitatively outperforms the state-of-the-art method with an average head pose mean error of less than $4.5^{\circ}$ in real-time.
International Journal of Computer Science & Network Security
/
제23권4호
/
pp.48-54
/
2023
Nowadays, a blind man finds it very difficult to cross the roads. They should be very vigilant with every step they take. To resolve this problem, Convolutional Neural Networks(CNN) is a best method to analyse the data and automate the model without intervention of human being. In this work, a traffic signal recognition system is designed using CNN for the visually impaired. To provide a safe walking environment, a voice message is given according to light state and timer state at that instance. The developed model consists of two phases, in the first phase the CNN model is trained to classify different images captured from traffic signals. Common Objects in Context (COCO) labelled dataset is used, which includes images of different classes like traffic lights, bicycles, cars etc. The traffic light object will be detected using this labelled dataset with help of object detection model. The CNN model detects the color of the traffic light and timer displayed on the traffic image. In the second phase, from the detected color of the light and timer value a text message is generated and sent to the text-to-speech conversion model to make voice guidance for the blind person. The developed traffic light recognition model recognizes traffic light color and countdown timer displayed on the signal for safe signal crossing. The countdown timer displayed on the signal was not considered in existing models which is very useful. The proposed model has given accurate results in different scenarios when compared to other models.
MRI, particularly diffusion weighted imaging (DWI), plays vital roles in detection of the acute brain infarction$\^$1-4/ and others metabolic changes of biological tissues. In general, every molecule in biological tissues may diffuse and move randomly in three-dimensional space. However, in clinical diagnosis, only 2D-DWI is used. The authors have developed a new method for rapid three-dimensional DWI (3D-DWI). In this method, by refocusing of the magnetized spin with the applied gradient field, direction of which is opposite to phase encoding field. Magnetized spin of $^1$H is kept under the SSFP (steady state free precession)$\^$5-6/. Under SSFP, in addition of FID, spin echo and stimulated echo are also generated, so the acquired signal is increased. The signal intensity is increased depending on flip angle (FA) of magnetized spin. This phenomenon is confirmed by human brain and phantom studies. The performance of this method is quantitatively analyzed by using both of conventional spin echo DWI and 3D-DWI. From experimental results, three dimensional diffusion weighted images are obtained correctly for liquid phantoms (water, acetone and oil), diffusion coefficient is enhanced in each image. Therefore, this method will provide useful information for clinical diagnosis.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.