• Title/Summary/Keyword: human sensitivity engineering

Search Result 258, Processing Time 0.031 seconds

A Study on the Virtual Grating Projection Moire Topography for the Shape Measurement of Human Face (인체형상 측정을 위한 가상격자 영사식 무아레 방법에 관한 연구)

  • 유원재;최정표;안중근;강영준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.49-52
    • /
    • 2001
  • Moire topography method is a well-known non-contacting 3-D measurement method. Recently, the automatic 3-D measurement by moire topography has been required since the method was frequently applied to the engineering and medical fields. 3-D measurement using projection moire topogrphy is very attractive because of it s high measuring speed and high sensitivity. In this paper, using two-wavelength method of projection moire topography tested to measuring object with the $2\pi$-ambiguity problem. Experimental results prove that the proposed scheme is capable of finding absolute fringe orders, so that the $2\pi$-ambiguity problem can be effectively overcome so as to treat large step discontinuities in measured objects.

  • PDF

A study on 3-D shape measurement for the composition of human bust (인체흉상 합성을 위한 3차원 형상 측정에 관한 연구)

  • 안중근;강영준;최정표;유원재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.220-223
    • /
    • 1997
  • Moire topography method is a well-known non-contacting 3-D measuement method. Recently, the automatic 3-D measurement by moire topography has been required since the method was frequently applied to the engineering and medical fields. 3-D measurement using projection moire topography is very attractive because of it's high measuring speed and high sensitivity. In this paper, using two-wavelength method of projection moire topography tested to measuring object with the 2x-ambiguity problem. Experimental results prove that the proposed scheme is capable of finding absolute fringe orders, so that the 2x-ambiguity problem can be effectively overcome so as to treat large step discontinuities in measured objects.

  • PDF

Practical Considerations for Hardware Implementations of the Auditory Model and Evaluations in Real World Noisy Environments

  • Kim, Doh-Suk;Jeong, Jae-Hoon;Lee, Soo-Young;Kil, Rhee M.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.1E
    • /
    • pp.15-23
    • /
    • 1997
  • Zero-Crossings with Peak Amplitudes(ZCPA) model motivated by human auditory periphery was proposed to extract reliable features speech signals even in noisy environments for robust speech recognition. In this paper, some practical considerations for digital hardware implementations of the ZCPA model are addressed and evaluated for recognition of speech corrupted by several real world noises as well as white Gaussian noise. Infinite impulse response(IIR) filters which constitute the cochliar filterbank of the ZCPA are replaced by hamming bandpass filters of which frequency responses are less similar to biological neural tuning curves. Experimental results demonstrate that the detailed frequency response of the cochlear filters are not critical to performance. Also, the sensitivity of the model output to the variations in microphone gain is investigated, and results in good reliability of the ZCPA model.

  • PDF

A Forecasting System for Lung Cancer Sensitivities Using SNP Data

  • Ryoo, Myung-Chun;Kim, Sang-Jin;Park, Chang-Hyeon
    • 한국정보컨버전스학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.191-194
    • /
    • 2008
  • SNP(Single Nucleotide Polymorphism) refers to the difference in a base pair existed in DNAs of individuals. Each of it appears per 1,000 bases in human genome and it enables each gene to defer in junctions, interacts with each other to make different shapes of humans, and produces different disease sensitivities. In this paper, we propose a system to forecast lung cancer sensitivities using SNP data related with the lung cancer. A lung cancer sensitivity forecasting model is also constructed through analysis of genetic and non-genetic factors for squamous cell carcinomas, adeno carcinomas, and small cell carcinomas that may frequently appear in Korean. The proposed system with the model gives the probabilities of the onset of lung cancers in the experimental subjects.

  • PDF

Construction of the Sound Quality Index and Grade at Automotive Level D Noise (차량 D 단 소음의 음질 인덱스 및 등급화 구축)

  • Yun, Tae-Kun;Park, Sang-Gil;Sim, Hyun-Jin;Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.186-189
    • /
    • 2005
  • Since human listening is very sensitive to sound, a subjective index of a sound quality is required. Therefore, in the analysis for each situation, the sound evaluation is composed with sound quality factor. Many researchers spends their effort to make a more reliable and more accurate of sound in term of sound quality index for various system noise. In this study a reliable index is constructed and analyzed using correlation analysis, regression analysis and weighting factor for each sound quality factor. We have made the sound quality index that agrees with more than human subjective sensitivity which apply to various sound quality metrics. Also we applied a 'grade' metric to jury for sound evaluation, analyzed relation between sound duality index and sound quality grade. Then we will judge the sound quality level according to the sound quality grade scheme.

  • PDF

Improvement of Floor Impact Noise Measurement and Method for Rating Floor Impact Noise Isolation Performance (바닥충격음 측정 및 차음 평가의 방향)

  • Jeong, Jeong-Ho;Jeong, Yeong;Seo, Sang-Ho;Song, Hee-Soo;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.269-274
    • /
    • 2004
  • The aims of this study were to Investigate the floor impact noise isolation performance of floating floor with isolation materials and propose the improvement direction of floor impact noise measurement method and evaluation classes using impact ball. Reduction of light-weight impact sound pressure level can be achieved by the finishing materials, such as vinyl finishing material and wooden flooring with isolation materials. Floor impact noise Isolation material which satisfy the properties of the floor impact noise isolation materials cause resonance in the low frequency band and worsen heavy-weight impact sound pressure level. Heavy-weight impact sound level can be reduced by using noise reduction flooring, ceiling and increase of slab thickness. Strong impact force in low frequency bang below 63Hz of bang machine is not similar to human impact source and causes some problem in evaluating heavy-weight impact noise but heavy-weight impact noise measurement and evolution using impact ball which is very similar to human impact is more reliable than bang machine. Correction value on the background noise and sensitivity of residents should be considered on the floor impact noise evaluation classes.

  • PDF

Analysis of the Uncertainty of Compressive Forces Acting on the Patella by Using Multi-Body Modeling and Muscle Mechanics (다물체 모델링과 근의 특성을 이용한 무릎뼈에 가해지는 압력의 불확실성 추정 연구)

  • NamGoong, Hong;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.785-790
    • /
    • 2011
  • The goal of this study is to estimate the force acting on the knee joint in the human body by using the Hilltype muscle model based on a musculoskeletal model of the human lower extremity in the sagittal plane. For estimating the force applied, the human leg is modeled using multi-body modeling. This leg model comprises biarticular muscles acting on two joints of the upper and lower limbs, and the muscles include some of the major muscles such as the hamstring. In order to analyze the uncertainty of the applied forces acting on the knee joint, statistical distributions of human body, leg part, parameters are required and to obtain the parameter's statistical characteristic of the part sample survey method is employed. Finally, by using the sensitivity information of the parameters, the force acting on the knee joint can be estimated.

An Empirical Study on Evaluation of Performance Shaping Factors on AHP (AHP 기법을 이용한 수행영향인자 평가에 관한 연구)

  • Jung, Kyung-Hee;Byun, Seong-Nam;Kim, Jung-Ho;Heo, Eun-Mee;Park, Hong-Joon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.99-108
    • /
    • 2011
  • Almost all companies have paid much attention to the safety management ranging from maintenance to operation even at the stage of designing in order to prevent accidents, but fatal accidents continue to increase throughout the world. In particular, it is essential to systematically prevent such fatal accidents as fire, explosion or leakage of toxic gas at factories in order to not only protect the workers and neighbors but also prevent economic losses and environmental pollution. Though it is well known that accident probability is very low in NPP(Nuclear Power Plants), the reason why many researches are still being performed about the accidents is the results may be so severe. HRA is the main process to make preparation for possibility of human error in designing of the NPP. But those techniques have some problems and limitation as follows; the evaluation sensitivity of those techniques are out of date. And the evaluation of human error is not coupled with the design process. Additionally, the scope of the human error which has to be included in reliability assessment should be expanded. This work focuses on the coincidence of human error and mechanical failure for some important performance shaping factors to propose a method for improving safety effectively of the process industries. In order to apply in these purposes into the thesis, I found 63 critical Performance Shaping Factors of the eight dimensions throughout studies that I executed earlier. In this study, various analysis of opinion of specialists(Personal Factors, Training, Knowledge or Experience, Procedures and Documentation, Information, Communications, HMI, Workplace Design, Quality of Environment, Team Factors) and the guideline for construction of PSF were accomplished. The selected method was AHP which simplifies objective conclusions by maintaining consistency. This research focused on the implementation process of PSF to evaluate the process of PSF at each phase. As a result, we propose an evaluation model of PSF as a tool to find critical problem at each phase and improve on how to resolve the problems found at each phase. This evaluation model makes it possible to extraction of PSF succesfully by presenting the basis of assessment which will be used by enterprises to minimize the trial and error of construction process of PSF.

Dyeing Research of Silk Color Code for Efficient Color Management in Silk (실크산업의 효율적인 색채관리를 위한 실크 컬러코드의 염색 연구)

  • Lee, Kyung-Hee
    • Fashion & Textile Research Journal
    • /
    • v.6 no.6
    • /
    • pp.785-798
    • /
    • 2004
  • Silk has always been coveted as the finest and richest of all fibers woven into cloth. The earlist woven silk fragments found to date come from the third century B.C. The filament created and spun into cocoon by the larva of the silk moth, silk was exported from China to Europe from as early as the third century B.C. Silk industry is export leading industry that guide national textile industry development after the 1960s in Korea. Korean silk industry reached to peak at 1975 is displaying appearance that export scale is decreased recently. Various kinds methods can be proposed for high value added in silk industry, the research about color is essential. The importance of color is increasing in modern textile and fashion industry. Color is important factor of textile and fashion industry because color affects strong influence in human's sensitivity. Silk fabric can give high added value developing high sensitivity color because dye ability is superior. In this study I planned the "Utility Silk Color Code 288" for efficient color management in silk industry. "Utility Silk Color Code 288" are attached the Munsell notation and dyeing data which can reappear the color when needed. This research constructs for insufficient domestic color infrastruction and expect that basic role to develop the competitive power for Korean silk industry.

Transparent and Flexible All-Organic Multi-Functional Sensing Devices Based on Field-effect Transistor Structure

  • Trung, Tran Quang;Tien, Nguyen Thanh;Seol, Young-Gug;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.491-491
    • /
    • 2011
  • Transparent and flexible electronic devices that are light-weight, unbreakable, low power consumption, optically transparent, and mechanical flexible possibly have great potential in new applications of digital gadgets. Potential applications include transparent displays, heads-up display, sensor, and artificial skin. Recent reports on transparent and flexible field-effect transistors (tf-FETs) have focused on improving mechanical properties, optical transmittance, and performances. Most of tf-FET devices were fabricated with transparent oxide semiconductors which mechanical flexibility is limited. And, there have been no reports of transparent and flexible all-organic tf-FETs fabricated with organic semiconductor channel, gate dielectric, gate electrode, source/drain electrode, and encapsulation for sensor applications. We present the first demonstration of transparent, flexible all-organic sensor based on multifunctional organic FETs with organic semiconductor channel, gate dielectric, and electrodes having a capability of sensing infrared (IR) radiation and mechanical strain. The key component of our device design is to integrate the poly(vinylidene fluoride-triflouroethylene) (P(VDF-TrFE) co-polymer directly into transparent and flexible OFETs as a multi-functional dielectric layer, which has both piezoelectric and pyroelectric properties. The P(VDF-TrFE) co-polumer gate dielectric has a high sensitivity to the wavelength regime over 800 nm. In particular, wavelength variations of P(VDF-TrFE) molecules coincide with wavelength range of IR radiation from human body (7000 nm ~14000 nm) so that the devices are highly sensitive with IR radiation of human body. Devices were examined by measuring IR light response at different powers. After that, we continued to measure IR response under various bending radius. AC (alternating current) gate biasing method was used to separate the response of direct pyroelectric gate dielectric and other electrical parameters such as mobility, capacitance, and contact resistance. Experiment results demonstrate that the tf-OTFT with high sensitivity to IR radiation can be applied for IR sensors.

  • PDF