• 제목/요약/키워드: human operator control system

검색결과 144건 처리시간 0.028초

인간 운용자 제어시스템의 퍼지-뉴럴 모델링 (Fuzzy-Neural Modeling of a Human Operator Control System)

  • 이석재;유준
    • 제어로봇시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.474-480
    • /
    • 2007
  • This paper presents an application of intelligent modeling method to manual control system with human operator. Human operator as a part of controller is difficult to be modeled because of changes in individual characteristics and operation environment. So in these situation, a fuzzy model developed relying on the expert's experiences or trial and error may not be acceptable. To supplement the fuzzy model block, a neural network based modeling error compensator is incorporated. The feasibility of the present fuzzy-neural modeling scheme has been investigated for the real human based target tracking system.

Man-Machine 제어시스템 분석 (Man-machine control system analysis)

  • 이상훈;최중락;김영수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.394-397
    • /
    • 1987
  • This paper presents an analysis of the man-machine control system. A man-machine system depends on the performance of a human operator for proper operation. The analysis method is based upon the assumption that human operator will act in a near optimal controller. Optimal control theory and its associated state space representation is used as the basis for the analytic procedure. The computer simulation for a given plant shows that plant parameters have limited range by the human operator.

  • PDF

힘 제어 기반의 로봇 팔과 인간 팔의 상호 작용을 위한 임베디드 시스템 설계 (Implementation of an Embedded System for an Interaction between Robot Arm and Human Arm Based on Force Control)

  • 전효원;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제15권11호
    • /
    • pp.1096-1101
    • /
    • 2009
  • In this paper, an embedded system has been designed for force control application to interact between a robot arm and a human operator. Force induced by the human operator is converted to the desired position information for the robot to follow. For smooth operations, the impedance force control algorithm is utilized to represent interaction between the robot and the human operator by filtering the force. To improve the performance of position control of the robot arm, a velocity term has been obtained and tested by several filters. A PD controller for position control has been implemented on an FPGA as well. Experimental studies are conducted with the ROBOKER to test the functionality of the designed hardware.

A Study on a Human-Oriented Compensator for the Human-Machine System

  • Ohtsuka, Hirofumi;Shibasato, Koki;Uemura, Hirofumi;Kawaji, Shigeyasu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.657-662
    • /
    • 2003
  • A mechanical system controlled by human operator, such as master-slave system, includes human dynamics in the whole system and such a system is called a human-machine system. In the system, operator's skill is required considerably in order to realize a meaningful operation. In this paper, a new concept and design strategy of compensator that improves the operativity of human-machine system are proposed. The compensator is called "collaborater "that is named after "collaborator" who works together with people. We mean not to design the automatic controller but the compensator that works together with a machine so that human feels the fulfillment in the operation. Our aim is to realize cooperation of people and a machine on a higher level.

  • PDF

DEVELOPMENT OF AN INTEGRATED DECISION SUPPORT SYSTEM TO AID COGNITIVE ACTIVITIES OF OPERATORS

  • Lee, Seung-Jun;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제39권6호
    • /
    • pp.703-716
    • /
    • 2007
  • As digital and computer technologies have grown, human-machine interfaces (HMIs) have evolved. In safety-critical systems, especially in nuclear power plants (NPPs), HMIs are important for reducing operational costs, the number of necessary operators, and the probability of accident occurrence. Efforts have been made to improve main control room (MCR) interface design and to develop automated or decision support systems to ensure convenient operation and maintenance. In this paper, an integrated decision support system to aid operator cognitive processes is proposed for advanced MCRs of future NPPs. This work suggests the design concept of a decision support system which accounts for an operator's cognitive processes. The proposed system supports not only a particular task, but also the entire operation process based on a human cognitive process model. In this paper, the operator's operation processes are analyzed according to a human cognitive process model and appropriate support systems that support each cognitive process activity are suggested.

Overview of Human Adaptive Mechatronics and Assist-control to Enhance Human's Proficiency

  • Suzuki, Satoshi;Furuta, Katsuhisa;Harashima, Fumio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1759-1764
    • /
    • 2005
  • Human Adaptive Mechatronics(HAM) is a new concept which was proposed in our university's research project sponsored by Japanese Ministry of Education, Sports, Culture, Science and Technology(MEXT), and is defined as "intelligent mechanical systems that adapt themselves to the user's skill under various environments, assist to improve the user's skill, and assist the human-machine system to achieve best performance". In this paper, the concept and key-items of HAM are mentioned. And the control strategy to realize a HAM human-machine system is explained in the case of physical-interface system, i.e. haptic system. The proposed assist-control of a force-feedback type haptic system includes online estimation of a operator's control characteristics, and a `force assist' function implemented as a change in the support ratio according to the identified skill level. We developed a HAM-haptic device test system, executed evaluation experiments with this apparatus, and analyzed the measured data. It was confirmed that the operator's skill could be estimated and that operator's performance was enhanced by the assist-control.

  • PDF

차량의 미래위치 추정을 위한 수동추적 시스템의 디지털 필터 설계 (A digital filter design applied to the manual tracking system to predict future position)

  • 박용운;강윤식;김상원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1332-1335
    • /
    • 1996
  • It is very important to predict the future position for the heavy vehicle with evasive maneuvering. In this paper, we considered for the manual image tracking system. The vehicle images are received from gyro stabilized mirror system, pass through the optical lens, processed, and displayed on the TV monitor. The operator try to lay the reticle to the center of vehicle image. When the vehicle is moving, the mirror platform (actually the line of sight) should follow the vehicle and the angular rate information is picked up from the mirror stabilized system. This rate signal should be used to predict the future vehicle position. The problem is that the visual system of the human operator is in the closed loop system. The rate signals are disturbed by the operator. In addition, there are some non linearities concerned with the control handle bar and the servo control system. The proposed Kalman filter, combined with some modifications for operator disturbance rejection, improved the predication of the future vehicle position when compared with the conventional passive filter used.

  • PDF

CMAC 메모리에 의한 연마공정자동화 (Automization of grinding process by CMAC)

  • 정재문;김기엽;정광조
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.186-189
    • /
    • 1990
  • The automization of manufacturing lines may be accomplished by replacing the human operator with computer system. This paper describes an idea to fully automize the razor qrinding process. Now, in this system, to control the process, human operator must estimate the qrinded states and control the grinding machine continuously. We propose two methods to automize this process by using CMAC memory. One is about learning expert-rules without direct communication with operator. And the other is complete self-learning method based on CMAC's learning algorithm. These ideas may be applied for another manufacturing processes.

  • PDF

로봇 운용성 시뮬레이터(ROSim)의 군사로봇 운용성 평가에 실험적 적용 연구 (Experimental Application of Robot Operability Simulator (ROSim) to the Operability Assessment of Military Robots)

  • 최상영;박우성
    • 로봇학회논문지
    • /
    • 제13권3호
    • /
    • pp.151-156
    • /
    • 2018
  • Military robots are expected to play an important role in the future battlefield, and will be actively engaged in dangerous, repetitive and difficult tasks. During the robots perform the tasks a human operator controls the robots in a supervisory way. The operator recognizes battlefield situations from remote robots through an interface of the operator control center, and controls them. In the meantime, operator workload, controller interface, robot automation level, and task complexity affect robot operability. In order to assess the robot operability, we have developed ROSim (Robot Operational Simulator) incorporating these operational factors. In this paper, we introduce the results of applying ROSim experimentally to the assessment of reconnaissance robot operability in a battle field. This experimental assessment shows three resulting measurements: operational control workload, operational control capability, mission success rate, and discuss its applicability to the defense robot research and development. It is expected that ROSim can contribute to the design of an operator control center and the design analysis of a human-robot team in the defense robot research and development.

표적추적장치의 수동제어명령 개선을 위한 운용자 모델링 (Human Operator Modeling of Target Tracking System for Improving Manual Control Command)

  • 이석재;유준
    • 전자공학회논문지SC
    • /
    • 제44권3호
    • /
    • pp.51-57
    • /
    • 2007
  • 표적추적장치의 수동제어기는 인간 운용자의 동특성에 따라 제어명령을 생성하고 원하지 않는 잡음과 외란의 영향으로 시스템의 성능과 안정성을 보장하지 못하게 하는 요인이 되고 있다. 특히, 야지를 기동시 운용자의 운용환경에 따라 운용자 특성이 변동될 경우 시스템의 성능저하와 불안정성은 더욱 증가 된다. 즉, 인간이 제어루프에 포함된 수동제어기는 설계단계에서 시간지연과 같은 운용자의 특성을 고려하여야 하며, 운용자에 의해 생성되는 제어명령이 실제 운용환경에서 외란과 동특성의 변화에 적합하도록 하여야 한다. 본 논문에서는 전시기를 통해 표적을 수동핸들로 추적하는 표적추적장치의 수동제어기를 인간운용자를 포함시켜 구성하고자, 추적명령을 생성하는 운용자 모델링을 수행하였다. 특히, 주행하는 차량에 탑재된 표적추적장치는 외란과 추적위치에 잡음이 많이 존재하기 때문에 운용자 모델링이 쉽지 않은 것으로 알려져 있다. 따라서, 수동표적추적장치의 실제 운용환경에서 수집된 데이터를 이용하여 운용자 및 수동제어기의 모델링을 수행하고, 시뮬레이션을 통하여 적용된 운용자 모델의 타당성과 실효성을 보였다.