• Title/Summary/Keyword: human operator

Search Result 452, Processing Time 0.021 seconds

Analysis of the Human Performance and Communication Effects on the Operator Tasks of Military Robot Vehicles by Using Extended Petri Nets (확장된 페트리네트를 이용한 차량형 군사로봇의 운용자 성능 및 통신장애 영향분석)

  • Choi, Sang Yeong;Yang, Ji Hyeon
    • Korean Journal of Computational Design and Engineering
    • /
    • v.22 no.2
    • /
    • pp.162-171
    • /
    • 2017
  • Unmanned military vehicles (UMVs) are most commonly characterized as dealing with dull, dirty, and dangerous tasks with automation. Although most of the UMVs are designed to a high degree of autonomy, the human operator will still intervene in the robot's operation, and teleoperate them to achieve his or her mission. Thus, operator capacity, together with robot autonomy and user interface, is one of the most important design factors in the research and development of the UMVs. Further, communication may affect the operator task performance. In this paper, we analyze the operator performance and the communication effects on the operator performance by using the extended Petri nets, called OTSim nets. The OTSim nets was designed by the authors, being extended using pure Petri nets.

A plant-specific HRA sensitivity analysis considering dynamic operator actions and accident management actions

  • Kancev, Dusko
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1983-1989
    • /
    • 2020
  • The human reliability analysis is a method by which, in general terms, the human impact to the safety and risk of a nuclear power plant operation can be modelled, quantified and analysed. It is an indispensable element of the PSA process within the nuclear industry nowadays. The paper herein presents a sensitivity study of the human reliability analysis performed on a real nuclear power plant-specific probabilistic safety assessment model. The analysis is performed on a pre-selected set of post-initiator operator actions. The purpose of the study is to investigate the impact of these operator actions on the plant risk by altering their corresponding human error probabilities in a wide spectrum. The results direct the fact that the future effort should be focused on maintaining the current human reliability level, i.e. not letting it worsen, rather than improving it.

Fuzzy-Neural Modeling of a Human Operator Control System (인간 운용자 제어시스템의 퍼지-뉴럴 모델링)

  • Lee, Seok-Jae;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.474-480
    • /
    • 2007
  • This paper presents an application of intelligent modeling method to manual control system with human operator. Human operator as a part of controller is difficult to be modeled because of changes in individual characteristics and operation environment. So in these situation, a fuzzy model developed relying on the expert's experiences or trial and error may not be acceptable. To supplement the fuzzy model block, a neural network based modeling error compensator is incorporated. The feasibility of the present fuzzy-neural modeling scheme has been investigated for the real human based target tracking system.

Human Operator Modeling of Target Tracking System for Improving Manual Control Command (표적추적장치의 수동제어명령 개선을 위한 운용자 모델링)

  • Lee, Seok-Jae;Lyou, Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.3
    • /
    • pp.51-57
    • /
    • 2007
  • Without human dynamics effects, the manually operated target tracking system has poor performance or instability in real environments. The tracking system is invalid when a human is added to the control loop as a real time delay, because input signals are generated by human operator to reduce the errors between target and gun. In this paper, we consider the human operator as a part of controller and modeling the human operator as a first-order model to generate the intentional force. But it is known that human modeling is not easy because of disturbance or noise of the vehicle while moving for the target. We performed a variety of experiments with real plant to identify the model's parameters and verify the proposed operator model's efficiency.

Implementation of an Operator Model with Error Mechanisms for Nuclear Power Plant Control Room Operation

  • Suh, Sang-Moon;Cheon, Se-Woo;Lee, Yong-Hee;Lee, Jung-Woon;Park, Young-Taek
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.349-354
    • /
    • 1996
  • SACOM(Simulation Analyser with Cognitive Operator Model) is being developed at Korea Atomic Energy Research Institute to simulate human operator's cognitive characteristics during the emergency situations of nuclear power plans. An operator model with error mechanisms has been developed and combined into SACOM to simulate human operator's cognitive information process based on the Rasmussen's decision ladder model. The operational logic for five different cognitive activities (Agents), operator's attentional control (Controller), short-term memory (Blackboard), and long-term memory (Knowledge Base) have been developed and implemented on blackboard architecture. A trial simulation with a scenario for emergency operation has been performed to verify the operational logic. It was found that the operator model with error mechanisms is suitable for the simulation of operator's cognitive behavior in emergency situation.

  • PDF

Experimental Application of Robot Operability Simulator (ROSim) to the Operability Assessment of Military Robots (로봇 운용성 시뮬레이터(ROSim)의 군사로봇 운용성 평가에 실험적 적용 연구)

  • Choi, Sangyeong;Park, Woosung
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.3
    • /
    • pp.151-156
    • /
    • 2018
  • Military robots are expected to play an important role in the future battlefield, and will be actively engaged in dangerous, repetitive and difficult tasks. During the robots perform the tasks a human operator controls the robots in a supervisory way. The operator recognizes battlefield situations from remote robots through an interface of the operator control center, and controls them. In the meantime, operator workload, controller interface, robot automation level, and task complexity affect robot operability. In order to assess the robot operability, we have developed ROSim (Robot Operational Simulator) incorporating these operational factors. In this paper, we introduce the results of applying ROSim experimentally to the assessment of reconnaissance robot operability in a battle field. This experimental assessment shows three resulting measurements: operational control workload, operational control capability, mission success rate, and discuss its applicability to the defense robot research and development. It is expected that ROSim can contribute to the design of an operator control center and the design analysis of a human-robot team in the defense robot research and development.

A methodology for evaluating human operator's fitness for duty in nuclear power plants

  • Choi, Moon Kyoung;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.984-994
    • /
    • 2020
  • It is reported that about 20% of accidents at nuclear power plants in Korea and abroad are caused by human error. One of the main factors contributing to human error is fatigue, so it is necessary to prevent human errors that may occur when the task is performed in an improper state by grasping the status of the operator in advance. In this study, we propose a method of evaluating operator's fitness-for-duty (FFD) using various parameters including eye movement data, subjective fatigue ratings, and operator's performance. Parameters for evaluating FFD were selected through a literature survey. We performed experiments that test subjects who felt various levels of fatigue monitor information of indicators and diagnose a system malfunction. In order to find meaningful characteristics in measured data consisting of various parameters, hierarchical clustering analysis, an unsupervised machine-learning technique, is used. The characteristics of each cluster were analyzed; fitness-for-duty of each cluster was evaluated. The appropriateness of the number of clusters obtained through clustering analysis was evaluated using both the Elbow and Silhouette methods. Finally, it was statistically shown that the suggested methodology for evaluating FFD does not generate additional fatigue in subjects. Relevance to industry: The methodology for evaluating an operator's fitness for duty in advance is proposed, and it can prevent human errors that might be caused by inappropriate condition in nuclear industries.

Experimental Studies of Balancing Control of a Two-wheel Mobile Robot for Human Interaction by Angle Modification (이륜 구동 로봇의 균형 각도 조절을 통한 사람과의 상호 제어의 실험적 연구)

  • Lee, Seung Jun;Jung, Seul
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.2
    • /
    • pp.67-74
    • /
    • 2013
  • This paper presents interaction force control between a balancing robot and a human operator. The balancing robot has two wheels to generate movements on the plane. Since the balancing robot is based on position control, the robot tries to maintain a desired angle to be zero when an external force is applied. This leads to the instability of the system. Thus a hybrid force control method is employed to react the external force from the operator to guide the balancing robot to the desired position by a human operator. Therefore, when an operator applies a force to the robot, desired balancing angles should be modified to maintain stable balance. To maintain stable balance under an external force, suitable desired balancing angles are determined along with force magnitudes applied by the operator through experimental studies. Experimental studies confirm the functionality of the proposed method.

DEVELOPMENT OF AN INTEGRATED DECISION SUPPORT SYSTEM TO AID COGNITIVE ACTIVITIES OF OPERATORS

  • Lee, Seung-Jun;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.703-716
    • /
    • 2007
  • As digital and computer technologies have grown, human-machine interfaces (HMIs) have evolved. In safety-critical systems, especially in nuclear power plants (NPPs), HMIs are important for reducing operational costs, the number of necessary operators, and the probability of accident occurrence. Efforts have been made to improve main control room (MCR) interface design and to develop automated or decision support systems to ensure convenient operation and maintenance. In this paper, an integrated decision support system to aid operator cognitive processes is proposed for advanced MCRs of future NPPs. This work suggests the design concept of a decision support system which accounts for an operator's cognitive processes. The proposed system supports not only a particular task, but also the entire operation process based on a human cognitive process model. In this paper, the operator's operation processes are analyzed according to a human cognitive process model and appropriate support systems that support each cognitive process activity are suggested.

Man-machine control system analysis (Man-Machine 제어시스템 분석)

  • 이상훈;최중락;김영수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.394-397
    • /
    • 1987
  • This paper presents an analysis of the man-machine control system. A man-machine system depends on the performance of a human operator for proper operation. The analysis method is based upon the assumption that human operator will act in a near optimal controller. Optimal control theory and its associated state space representation is used as the basis for the analytic procedure. The computer simulation for a given plant shows that plant parameters have limited range by the human operator.

  • PDF