• Title/Summary/Keyword: human non small lung cancer A-549 cells

Search Result 65, Processing Time 0.027 seconds

Anti-tumor Activity and Apoptosis-regulation Mechanisms of Bufalin in Various Cancers: New Hope for Cancer Patients

  • Yin, Pei-Hao;Liu, Xuan;Qiu, Yan-Yan;Cai, Jian-Feng;Qin, Jian-Min;Zhu, Hui-Rong;Li, Qi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5339-5343
    • /
    • 2012
  • The induction of apoptosis in target cells is a key mechanism for most anti-tumor therapies. Bufalin is a cardiotonic steroid that has the potential to induce differentiation and apoptosis of tumor cells. Research on bufalin has so far mainly involved leukemia, prostate cancer, gastric cancer and liver cancer, and has been confined to in vitro studies. The bufadienolides bufalin and cinobufagin have been shown to induce apoptosis in a wide spectrum of cancer cell. The present article reviews the anticancer effects of bufalin. It induces apoptosis of lung cancer cells via the PI3K/Akt pathway and also suppressed the proliferation of human non-small cell lung cancer A549 cell line in a time and dose dependent manner. Bufalin, bufotalin and gamabufotalin, key bufadienolides, significantly sensitize human breast cancer cells with differing ER-alpha status to apoptosis induction by the TNF-related apoptosis-inducing ligand (TRAIL). In addition, bufadienolides induce prostate cancer cell apoptosis more significantly than that in breast epithelial cell lines. Similar effects have been observed with hepatocellular carcinoma (HCC) but the detailed molecular mechanisms of inducing apoptosis in this case are still unclear. Bufalin exerts profound effects on leukemia therapy in vitro. Results of multiple studies indicate that bufalin has marked anti-tumor activities through its ability to induce apoptosis. Large-scale randomized, double-blind, placebo or positive drug parallel controlled studies are now required to confirm the efficacy and apoptosis-inducing potential of bufalin in various cancers in the cliniucal setting.

Comparative Uptake of Tc-99m Sestamibi and Tc-99m Tetrofosmin in Cancer Cells and Tissue Expressing P-Glycoprotein or Multidrug Resistance Associated Protein (P-Glycoprotein과 Multidrug Resistance Associated Protein을 발현하는 암세포와 종양에서 Tc-99m Sestamibi와 Tc-99m Tetrofosmin의 섭취율 비교)

  • Cho, Jung-Ah;Lee, Jae-Tae;Yoo, Jung-Ah;Seo, Ji-Hyoung;Bae, Jin-Ho;Jeong, Shin-Young;Ahn, Byeong-Cheol;Sohn, Sang-Gyun;Ha, Jeoung-Hee;Lee, Kyu-Bo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.1
    • /
    • pp.34-43
    • /
    • 2005
  • Purpose: $^{99m}Tc$-sestamibi(MIBI) and $^{99m}Tc$-tetrofosmin have been used as substrates for P-glycoprotein (Pgp) and multidrug resistance associated protein (MRP), which are closely associated with multidrug resistance of the tumors. To understand different handling of radiotracers in cancer cell lines expressing Pgp and MRP, we compared cellular uptakes of $^{99m}Tc$-MIBI and $^{99m}Tc$-tetrofosmin. The effects of cyclosporin A (CsA), well-known multidrug resistant reversing agent, on the uptake of both tracers were also compared. Materials and Methods: HCT15/CL02 human colorectal cancer cells for Pgp expressing cells, and human non-small cell lung cancer A549 cells for MRP expressing cells, were used for in vitro and in vivo studies. RT-PCR, western blot analysis and immunohistochemistry were used for detection of Pgp and MRP. MDR-reversal effect with CsA was evaluated at different drug concentrations after incubation with MIBI or tetrofosmin. Radioactivities of supernatant and pellet were measured with gamma well counter. Tumoral uptake of the tracers were measured from tumor bearing nude mice treated with or without CsA. Results: RT-PCR, western blot analysis of the cells and irnrnunochemical staining revealed selective expression of Pgp and MRP for HCY15/CL02 and A549 cells, respectively. There were no significant difference in cellular uptakes of both tracers in HCT15/CL02 cells, but MIBI uptake was slightly higher than that of tetrofosmin in A549 cells. Co-incubation with CsA resulted in a increase in cellular uptakes of MIBI and tetrofosmin. Uptake of MIBI or tetrofosmin in HCT15/CL02 cells was increased by 10- and 2.4-fold, and by 7.5 and 6.3-fold in A549 cells, respectively. Percentage increase of MIBI was higher than that of tetrofosmin with CsA for both cells (p<0.05). In vivo biodistribution study showed that MIBI (114% at 10 min, 257% at 60 min, 396% at 240 min) and tetrofosmin uptake (110% at 10 min, 205% at 60 min, 410% at 240 min) were progressively increased by the time, up to 240 min with CsA. But increases in tumoral uptake were not significantly different between MIBI and tetrofosmin for both tumors. Conclusion: MIBI seems to be a better tracer than tetrofosmin for evaluating MDR reversal effect of the modulators in vitro, but these differences were not evident in vivo tumoral uptake. Both MIBI and tetrofosmin seem to be suitable tracers for imaging Pgp- and MRP-mediated drug resistance in tumors.

Synergism Induced by Combination of Farnesyl Transferase Inhibitor SCH66336 and Insulin like-Growth Factor Binding Protein-3 in apoptosis of Non-Small Cell Lung Cancer Cell lines (비소세포성 폐암 세포주에서 Farnesyl Transferase Inhibitor SCH66336과 인슐린양 성장 인자 결합 단백-3의 병용처리에 의한 세포고사 상승 작용)

  • Kim, Young;Kim, Se Kyu;Kim, Hyung Jung;Chang, Joon;Ahn, Chul Min;Kim, Sung Kyu;Chang, Yoon Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.2
    • /
    • pp.120-128
    • /
    • 2005
  • Background : Insulin-like growth factor binding protein (IGFBP)-3 regulates non-small cell lung cancer(NSCLC) cell proliferation in vitro and in vivo by inhibiting IGF-mediated signaling pathways. To have better strategies for the treatment of lung cancer, we analyzed the combining effects of adenovirus expressing IGFBP-3 (Ad5CMV-BP3) and SCH66336, a farnesyl transferase inhibitor (FTI) designed to block Ras-mediated proliferative signaling pathways. Methods : To measure the combining effects of Ad5CMV-BP3 and SCH66336 on the proliferation of NSCLC cells, human NSCLC cell lines (H1299, H596, A549, H460, and H358), SCH66336, recombinant adenovirus expressing IGFBP-3 (Ad5CMV-BP3) and athymic nude mice were used in these experiments. Results : The combination of Ad5CMV-BP3 and SCH66336 produced a synergistic enhancement in antiproliferative effects over a range of clinically achievable concentrations in a variety of NSCLC cell lines. Furthermore, we observed a significant reduction in growth of NSCLC xenograft induced in athymic nude mice. Conclusion : In conclusion, this study demonstrated for the first time that the FTI SCH66336 synergizes with IGFBP-3 and enhances its apoptotic activity in NSCLC cells in vitro and in vivo. The combined treatment of Ad5CMV-BP3 and SCH66336 raises the possibility of using this regimen in clinic for the treatment of NSCLC.

Comparison of the Uptakes of Tc-99m MIBI and Tc-99m Tetrofosmin in A549, an MRP-expressing Cancer Cell, In Vitro and In Vivo (MRP발현 인체 비소세포 폐암 A549에서 Tc-99m MIBI와 Tc-99m Tetrofosmin섭취의 비교)

  • Yoo, Jeong-Ah;Jeong, Shin-Young;Seo, Myung-Rang;Bae, Jin-Ho;Ahn, Byeong-Cheol;Lee, Kyu-Bo;Choi, Sang-Woon;Lee, Byung-Ho;Lee, Jae-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.6
    • /
    • pp.382-392
    • /
    • 2003
  • Purpose: Uptakes of Tc-99m MIBI (MIBI) and Tc-99m tetrofosmin (tetrofosmin) in human non-small cell lung cancer A549, multidrug-resistance associated protein (MRP) expressing cell, were investigated in vitro and in vivo. Materials and Methods: Western blot analysis and immunohistochemistry were used for detection of MRP in A549 cells with anti-MRPr1 antibody. Cellular uptakes of two tracers were evaluated at $100{\mu}M$ of verapamil (Vrp), $50{\mu}M$ of cyclosporin A (CsA) and $25{\mu}M$ of butoxysulfoximide (BSO) after incubation with MIBI and tetrofosmin for 30 and 50 min at $37^{\circ}C$, using single cell suspensions at $1{\times}10^6cells/ml$. Radioactivities in supernatants and pellets were measured with gamma well counter. A549 cells were inoculated in each flanks of 24 nude mice. Group 1 (Gr1) and Gr3 mice were treated with only MIBI or tetrofosmin, and Gr2 and Gr4 mice were treated with 70mg/kg of CsA i.p. for 1 hour before injection of 370KBq of MIBI or tetrofosmin. Mice were sacrificed at 10, 60 and 240 min. Radioactivities of organs and tumors were expressed as percentage injected dose per gram of tissue (%ID/gm). Results: Western blot analysis of the A549 cells detected expression of MRPr1 (190 kDa) and immunohistochemical staining of tumor tissue for MRPr1 revealed brownish staining in cell membrane but not P-gp. Upon incubating A549 cells for 60 min with MIBI and tetrofosmin, cellular uptake of MIBI was higher than that of tetrofosmin. Coincubation with modulators resulted in an increase in cellular uptakes of MIBI and tetrofosmin. Percentage increase of MIBI was higher than that of tetrofosmin with Vrp by 623% and 427%, CsA by 753% and 629% and BSO by 219% and 140%, respectively. There was no significant difference in tumoral uptakes of MIBI and tetrofosmin between Gr1 and Gr3. Percentage increases in MIBI (114% at 10 min, 257% at 60 min, 396% at 240 min) and tetrofosmin uptake (110% at 10 min, 205% at 60 min, 410% at 240 min) were progressively higher by the time up to 240 min with CsA. Conclusion: These results indicate that MIBI and tetrofosmin are suitable tracers for imaging MRP-mediated drug resistance in A549 tumors. MIBI may be a better tracer than tetrofosmin for evaluating MRP reversal effect of modulators.

Reversal of Multidrug Resistance with KR-30035: Evaluated with Biodistribution of Tc-99m MIBI in Nude Mice Bearing Human Tumor Xenografts (이종이식된 인체종양에서 KR-30035가 Tc-99m MIBI체내 분포에 미치는 영향으로 평가한 다약제내성 역전가능성)

  • Kim, Jung-Kyun;Lee, Byung-Ho;Choi, Sang-Woon;Yoo, Sung-Eun;Lee, Sang-Woo;Chun, Kyung-Ah;Ahn, Byeong-Cheol;Park, Jae-Young;Suh, Jang-Soo;Lee, Kyu-Bo;Lee, Jae-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.3
    • /
    • pp.168-184
    • /
    • 2001
  • Purpose: KR-30035 (KR), a new MDR reversing agent, has been found to produce a similar degree of increased Tc-99m MIBI uptake in cultured tumor cells over-expressing mdr1 mRNA compared to verapamil (VP), with less cardiovascular effects. We assessed the MDR-reversing ability of KR in vivo, and effects of various doses of KR on MIBI uptake un nude mice hearing P-glycoprotein (P-gp) positive (+) and P-gp negative (-) human tumor xenografts. Methods: P-gp (+) HCT15/CL02 colorectal and P-gp (-) A549 non-small cell cancer cells were inoculated in each flank of 120 nude mice (20 mice ${\times}$ 6 groups). Group 1 (Gr1) mice received 10mg/kg KR i.p. 3 times $({\times}3)$; Gr2, 10mg/kg VP i.p. ${\times}3$; Gr3, 10mg/kg KR i.p. ${\times}2$ + 25mg/kg KR i.p. ${\times}1$; Gr4, 10mg/kg KR i.p. ${\times}2$ + 50mg/kg i.p. ${\times}1$; Gr5, 10mg/kg KR i.p. ${\times}2$ + 25mg/kg KR i.v. ${\times}1$, GrC, controls. The mice were then injected with Tc-99m MIBI and sacrificed after 10 min, 30 min, 90 min and 240 min. Tumor uptake of MIBI (TU) in each group was compared. Results: TU in P-gp (+) and (-) tumors were both higher in Gr1 than Gr2. Washout rate between the 10 min and 4 hours was lower in Gr5 of P-gp (+) cell(0.93) than the control. Percentage increases in TU were higher in P-gp (+) than P-gp (-) tumors with all KR doses. Pgp (+) TU were highest at 10 mon (173% of GrC) and persisted up to 240 min (144%) in Gr3. Larger doses of KR resulted in a lesser degree of increase in P-gp (+) TU at 10 min (130% in Gr4 and 117% un Gr5) and 30 min (178%, 129%), but TU increased by time up to 240 min (177%, 196%). Heart and lung uptakes were markedly increased in Gr4 and Gr5 at 10 and 30 min, likely due to cardiovascular effects. No mice died. Conclusion: These data further suggest that KR that has significantly lower cardiovascular toxicity than verapamil can be used as an active inhibitor of MDR. Even a relatively low dose of KR significantly increased Tc-99m MIBI uptake in P-gp (+) tumors in vivo.

  • PDF