• Title/Summary/Keyword: human monoclonal antibody

Search Result 218, Processing Time 0.028 seconds

Platelets Induce Proliferation of Human Umbilical Vein Endothelial Cells via CD154-CD40 Pathway Independently of VEGF

  • Cho, Wha-Jung;Ko, Eun-Mi;Cheon, In-Su;Jeoung, Doo-Il;Kim, Young-Myeong;Choe, Jong-Seon
    • IMMUNE NETWORK
    • /
    • v.8 no.3
    • /
    • pp.75-81
    • /
    • 2008
  • Background: Platelets take part in repairing the lesions of endothelial damage. To understand the molecular mechanism of this process, we tested the hypothesis that CD154 expressed on activated platelets stimulates proliferation of human endothelial cells. Methods: The expression levels of CD154 and CD40 on platelets and endothelial cells, respectively, were measured by flow cytometry and confocal microscopy. Function-blocking monoclonal antibody against CD154 was developed after immunization with CD154-transfected L cells. Results: An anti-CD40 agonist antibody and soluble CD154 both induced significant proliferation of endothelial cells. In addition, a function-blocking anti-CD154 antibody inhibited the platelet-induced proliferation of endothelial cells, indicating that the CD154-CD40 pathway is involved in these cellular interactions. An anti-VEGF antibody failed to inhibit the proliferation. This, in addition to the fact that very small amounts of VEGF are released from platelets or endothelial cells, suggests that VEGF does not play an important role in the platelet-stimulated proliferation of endothelial cells. Conclusion: Our results indicate that platelets induce proliferation of endothelial cells by CD154-CD40 interactions independently of VEGF.

Isolation of Mouse Ig Heavy and Light Chain Genomic DNA Clones, and Construction of Gene Knockout Vector for the Generation of Humanized Xenomouse (인간 단클론 항체 생산용 Humanized Xenomouse 제작의 기초 소재인 생쥐 Ig 중사슬 및 경사슬 Genomic DNA 클론의 확보 및 유전자 적중 벡터의 제작)

  • Lee, Hee-kyung;Cha, Sang-hoon
    • IMMUNE NETWORK
    • /
    • v.2 no.4
    • /
    • pp.233-241
    • /
    • 2002
  • Background: Monoclonal antibodies (mAb) of rodent origin are produced with ease by hybridoma fusion technique, and have been successfully used as therapeutic reagents for humans after humanization by genetic engineering. However, utilization of these antibodies for therapeutic purpose has been limited by the fact that they act as immunogens in human body causing undesired side effects. So far, there have been several attempts to produce human mAbs for effective in vivo diagnostic or therapeutic reagents including the use of humanized xenomouse that is generated by mating knockout mice which lost Ig heavy and light chain genes by homologous recombination and transgenic mice having both human Ig heavy and light gene loci in their genome. Methods: Genomic DNA fragments of mouse Ig heavy and light chain were obtained from a mouse brain ${\lambda}$ genomic library by PCR screening and cloned into a targeting vector with ultimate goal of generating Ig knockout mouse. Results: Through PCR screening of the genomic library, three heavy chain and three light chain Ig gene fragments were identified, and restriction map of one of the heavy chain gene fragments was determined. Then heavy chain Ig gene fragments were subcloned into a targeting vector. The resulting construct was introduced into embryonic stem cells. Antibiotic selection of transfected cells is under the progress. Conclusion: Generation of xenomouse is particularly important in medical biotechnology. However, this goal is not easily achieved due to the technical difficulties as well as huge financial expenses. Although we are in the early stage of a long-term project, our results, at least, partially contribute the successful generation of humanized xenomouse in Korea.

Periplasmic Expression of a Recombinant Antibody (MabB9) in Escherichia coli

  • Chang, Hae-Choon;Kwak, Ju-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.5
    • /
    • pp.299-304
    • /
    • 1997
  • Expression in the periplasm of Escherichia coli of cloned heavy and light chain cDNAs for Fab fragment of a murine monoclonal antibody MabB9 (${\gamma}2b$, K), specific for human plasma apolipoprotein B-100 of LDL, was studied. For the purpose, a vector for two-cistronic expression of the heavy chain cDNA, at the 5' terminus, and light chain cDNA, at the 3' terminus, was constructed using the signal sequences, pelB (for heavy chain) and ompA (for light chain) in a pET vector system. The constructed vector was transformed into E. coli BL21(DE3). The expressed heavy chain (25 kDa) and light chain (23 kDa) of the antibody molecule were detected in total cell extracts as well as in the periplasmic extracts of E. coli.

  • PDF

Purification of antigenic protein of sparganum by immunoaBnity chromatography using a monoclonal antibody (단세포군항체를 이용한 친화성 크로마토그래피에 의한 스파르가눔 항원의 순수분리)

  • Cho, Seung-Yull;Kang, Shin-Yong;Kong, Yoon
    • Parasites, Hosts and Diseases
    • /
    • v.28 no.3
    • /
    • pp.135-142
    • /
    • 1990
  • The quality improvement of antigen (crude saline extract) of Spirometra maptscni 1)lerocercoid (sparganum) was investigated by protein purificatioll. The crude extract was fractionated by gel filtration through Sephacryl S-300 Superfine. Its third fraction was purified by affinity chromatography using a monoclonal antibody as ligand. When observed by SDS-PAGE, the purified protein was composed of 2 bands of 36 kDa and 29 kDa which were found already as the most sensitive components in the crude extract by immunoblots with patients sera. The quality of the purified antigen was evaluated in comparison with the crude extract by ensyme-linked imnunosorbent assay (ELISA) for the specific (IgG) antibody in sera of human sparganosis, other parasitic and neurologic diseases, and normal control. When the purified antigen was used: the sensitivity was not altered but remained high (96.4%) while the specificity was increased from 86.8% to 96.9%.

  • PDF

Enhanced Tumor-targeted Gene Delivery by Immunolipoplexes Conjugated with the Humanized Anti-TAG-72 Fab' Fragments

  • Kim, Keun-Sik;Park, Yong-Serk;Hong, Hyo-Jeong;Kim, Kwang-Pyo;Lee, Kwang-Hyun;Kim, Dong-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.651-656
    • /
    • 2012
  • Cationic immunoliposomes were prepared by conjugation of Fab' fragments of the recombinant humanized monoclonal antibody (HuCC49) against tumor-associated glycoprotein (TAG)-72 to sterically unilamella liposomes. The cationic immunoliposomes are composed of cationic lipid (O,O'-dimyristyl-N-lysyl aspartate, DMKD), cholesterol, and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethyleneglycol)$_{2000}$] (DPPE-PEG-maleimide) with a molar ratio of 0.5:0.47:0.03. Plasmid DNA was effectively condensed by addition of transferrin (Tf) during the formation of anti-TAG-72 PEG-immunolipoplexes (PILPs). These anti-TAG-72 PILPs were able to adhere to the surface of TAG-72-overexepressing LS174T human colon cancer cells more effectively than conventional liposomes, thereby facilitating gene delivery in vitro. Furthermore, intravenous administration of the anti-TAG-72 PILPs into the tumor-carrying mice exhibited efficient localization of the reporter gene in the tumor tissues.

Antibody Production in Plant Cell Cultures

  • Lee, James M.
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.67-78
    • /
    • 1995
  • Monoclonal antibodies (MoAbs) are a highly diversified class of proteins with major research and commercial applications such as diagnostics and therapeutics. Currently, the dominant method for producing MoAbs is through the hybridoma technique. However, this technique is slow, tedious, labor intensive, and expensive. The production of MoAbs in cultured transgenic plant cells can offer some advantages over that in the over that in the mammalian systems. The media to cultivate plant cells are well defined and inexpensive. Contamination by bacteria or fungi is easily monitored in plant tissue cultures. Furthermore, these contaminants are usually not potent pathogens to human beings. In our interdisciplinary research efforts, heavy chain monoclonal antibody (HC MAb) was inserted into Ti plasmid vector and transferred into A. tumefaciens for the transformation in tobacco cells. It was found that 76% of the transformants produced HC MAb. The presence of HC MAb in the cell membrane fraction indicated that the signal peptide was functional and efficient. The change of the HC MAb concentration during a batch culture followed a similar trend as dry cell concentration, indicating that the production of HC MAb was growth related. The long-term repeated subcultures of 11 cell lines showed that there was no obvious trend of neither the decrease nor the increase of the productivity with the repeated subcultures.

  • PDF

Development of a Quantitative ELISA for Anti HER-2 Antibodies using Human HER-2 Recombinant Proteins (인간 HER-2 재조합 단백질을 사용한 항 HER-2 항체 단백질의 ELISA 정량 방법 개발)

  • Jung, Sun-Ki;Ryu, Chang-Seon;Choung, Kyu-Jin;Song, Gyu-Yong;Kim, Sang-Kyum
    • YAKHAK HOEJI
    • /
    • v.55 no.1
    • /
    • pp.16-21
    • /
    • 2011
  • HER-2 (Human Epidermal Growth Factor Receptor-2) is a protein giving higher aggressiveness in human breast cancers. Trastuzumab is a monoclonal antibody that targets HER-2 and is known to extend survival across all stages of HER2-positive breast cancer. In this study, we attempted to development of a quantitative ELISA (Enzyme-Linked ImmunoSorbent Assay) for evaluating anti HER-2 antibodies using human HER-2 recombinant proteins to support antibody producing processes and pharmacokinetic studies. We established direct or indirect ELISA method for the trastuzumab-like protein combined human recombinant HER-2. The ELISA method will prove to be great value in quantitating anti-HER-2 antibodies levels for developing anticancer antibodies.

A Rapid and Sensitive Two-Site Sandwich Enzyme-Linked Immunosorbent Assay for Detection of ${\alpha}$-Fetoprotein in Human Serum

  • Jang, Jeong-Su;Kim, Jeong-Min;Chung, Gi-Hyun;Paik, Bo-Hyun;Kim, Hack-Joo
    • BMB Reports
    • /
    • v.29 no.3
    • /
    • pp.192-199
    • /
    • 1996
  • A rapid and sensitive method has been developed to detect a-fetoprotein (AFP) in human serum by a two-site sandwich enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies (MAbs) for human AFP within 1 h. To obtain the most sensitive and reliable MAbs. 12 kinds of MAbs (HPJ1 to HPJ12) as a capture antibody and 4 kinds of horseradish peroxidase (HRP) conjugated MAbs as a tracer antibody were investigated. Among these, only HPJ 10-HRP conjugated HPJ 1 (HPJ 10-HPJ $1^*$) and HPJ 11-HRP conjugated HPJ 10 (HPJ 11-HPJ $10^*$) were chosen as candidates based on the linearity of the standard curve and the sensitivity of the assay. To further characterize these two pairs. MAbs against human AFP were purified from hybridoma cells. conjugated with HRP. and then characterized to optimize the two-site sandwich ELISA The HPJ 10-HPJ $1^*$ pair showed a sensitivity of 1 ng/ml and a better reproducibility than the HPJ 11-HPJ $10^*$ pair when the human sera were incubated at $37^{\circ}C$ for 30 min. The results obtained for 480 randomly selected human sera showed 0~20 ng/ml of AFP values for the normal human sera. To test the utility of our kit, AFP concentrations were determined for 951 human sera (including 85 normal sera, 480 random blood sera, 213 HBsAg-positives. 50 anti-HCV antibody positives. and 47 malignant diseases) and compared with other commercially available AFP detecting kits. These results show that the present two-site sandwich ELISA method is a rapid, sensitive, and reliable procedure for detecting AFP in human serum.

  • PDF

Production of a Recombinant Anti-Human CD4 Single-Chain Variable-Fragment Antibody Using Phage Display Technology and Its Expression in Escherichia coli

  • Babaei, Arash;Zarkesh-Esfahani, Sayyed Hamid;Gharagozloo, Marjan
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.5
    • /
    • pp.529-535
    • /
    • 2011
  • Single-chain variable fragment (scFv) is a fusion protein of the variable regions of the heavy (VH) and light (VL) chains of immunoglobulin, connected with a short linker peptide of 10 to about 20 amino acids. In this study, the scFv of a monoclonal antibody against the third domain of human CD4 was cloned from OKT4 hybridoma cells using the phage display technique and produced in E. coli. The expression, production, and purification of anti-CD4 scFv were tested using SDS-PAGE and Western blot, and the specificity of anti-CD4 scFv was examined using ELISA. A 31 kDa recombinant anti-CD4 scFv was expressed and produced in bacteria, which was confirmed by SDS-PAGE and Western blot assays. Sequence analysis proved the ScFv structure of the construct. It was able to bind to CD4 in quality ELISA assay. The canonical structure of anti-CD4 scFv antibody was obtained using the SWISS_MODEL bioinformatics tool for comparing with the scFv general structure. To the best of our knowledge, this is the first report for generating scFv against human CD4 antigen. Engineered anti-CD4 scFv could be used in immunological studies, including fluorochrome conjugation, bispecific antibody production, bifunctional protein synthesis, and other genetic engineering manipulations. Since the binding site of our product is domain 3 (D3) of the CD4 molecule and different from the CD4 immunological main domain, including D1 and D2, further studies are needed to evaluate the anti-CD4 scFv potential for diagnostic and therapeutic applications.

Immunological Studies on the Surface Antigens of Tumor Cells (종양세포 표면항원에 대한 분자면역학적 연구)

  • 김한도;김규원
    • The Korean Journal of Zoology
    • /
    • v.32 no.2
    • /
    • pp.142-152
    • /
    • 1989
  • We have produced a new monoclonal antibody detecting common acute lymphoblastic leukemia antigen (CALLA) and designated as KP-22. CALIA detected by KP-22 is expressed on the all of the various cefl lines examined including common ALL. Burkitt's lymphoma, human fibroblasts and cultured normal human fibroblasts. However out of cell lines tested, a fraction of J-ALL and all of myelocytic leukemia and all other nonleukemia cell lines except for fibroblast are CALIA negative. Immunoprecipitation of solubilized 125 I-labeled membrane proteins from cultured human fibroblasts and leukemia cell lines with KP-22 revealed a major polypeptide chain with an apparent molecular weight of approximately 100 Kd and 95 Kd, respectively. Even though a microheterogeneity in terms of molecular weight between two CALLAs, the peptide mapping patterns of them &e identical indicating that such a microheterogeneity seems to be partly due to heterogeneous terminal sialic acid compositions added by a posttranslational modification process.

  • PDF