• Title/Summary/Keyword: human milk bacteria

Search Result 65, Processing Time 0.026 seconds

Human Milk Microbiota: A Review (모유 미생물총에 대한 고찰)

  • Lee, Ju-Eun;Kim, Geun-Bae
    • Journal of Dairy Science and Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.15-26
    • /
    • 2019
  • A common belief is that human milk is sterile. However, the development of culture-independent molecular methods, especially Next Generation Sequencing, has revealed that human milk harbors diverse and rich bacterial communities. Although studies aimed at characterizing the microbiota of human milk have produced different findings, Staphylococcus and Streptococcus are presumed to be normal members of the microbiota. Factors that influence variation in the microbiota are unclear; however, the postpartum time, route of delivery, maternal obesity, and health status may be influential. The origin of the microbiota is a hotly debated topic. Human milk bacteria are thought to be introduced through bacterial exposure of the mammary duct during breast feeding and/or the entero-mammary pathway from the maternal gastrointestinal tract. Although the exact mechanism related to the entero-mammary pathway is unknown, it is presumed that bacteria penetrate the intestinal epithelium and then migrate to the mammary gland, dendritic cells, and macrophages. In this review, various relevant studies are introduced.

Human milk oligosaccharides: the novel modulator of intestinal microbiota

  • Jeong, Kyung-Hun;Nguyen, Vi;Kim, Jae-Han
    • BMB Reports
    • /
    • v.45 no.8
    • /
    • pp.433-441
    • /
    • 2012
  • Human milk, which nourishes the early infants, is a source of bioactive components for the infant growth, development and commensal formulation as well. Human milk oligosaccharide is a group of complex and diverse glycans that is apparently not absorbed in human gastrointestinal tract. Although most mammalian milk contains oligosaccharides, oligosaccharides in human milk exhibit unique features in terms of their types, amounts, sizes, and functionalities. In addition to the prevention of infectious bacteria and the development of early immune system, human milk oligosaccharides are able to facilitate the healthy intestinal microbiota. Bifidobacterial intestinal microbiota appears to be established by the unilateral interaction between milk oligosaccharides, human intestinal activity and commensals. Digestibility, membrane transportation and catabolic activity by bacteria and intestinal epithelial cells, all of which are linked to the structural of human milk oligosaccharides, are crucial in determining intestinal microbiota.

Isolation of Novel Strains of Lactobacillus gasseri EJL and Bifidobacterium breve JTL from Breast Milk and Infant Feces: A Longitudinal Study of a Mother-infant Pair

  • Lee, Heetae;Lee, Chong-Kil;Kim, Kyungjae
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Human breast milk is a potential source of bacteria for the development of the intestinal microbiota of infants. Several species within the genera Lactobacillus and Bifidobacterium were demonstrated to shape the gut microbiota of infants. In this study, the bacterial diversity was investigated in the breast milk and feces of a mother-infant pair, and probiotic candidates were identified. Importantly, the novel L. gasseri EJL and B. breve JTL strains were isolated from breast milk and infant feces samples, respectively; their completed genome was resolved using de novo sequencing. In addition, the bacterial composition in the infant's feces at 1 week revealed the prevalence of Bifidobacterium and Streptococcus; a higher diversity was observed after 3 weeks. In particular, the abundance of Akkermansia was sharply increased at 7 weeks, further increasing thereafter, up to 15 weeks. Our results suggest that human breast milk and infant's feces are a source of probiotic candidates.

Classification, Structure, and Bioactive Functions of Oligosaccharides in Milk

  • Mijan, Mohammad Al;Lee, Yun-Kyung;Kwak, Hae-Soo
    • Food Science of Animal Resources
    • /
    • v.31 no.5
    • /
    • pp.631-640
    • /
    • 2011
  • Milk oligosaccharides are the complex mixture of six monosaccharides namely, D-glucose, D-galactose, N-acetyl-glucosamine, N-acetyl-galactosamine, L-fucose, and N-acetyl-neuraminic acid. The mixture is categorized as neutral and acidic classes. Previously, 25 oligosaccharides in bovine milk and 115 oligosaccharides in human milk have been characterized. Because human intestine lacks the enzyme to hydrolyze the oligosaccharide structures, these substances can reach the colon without degradation and are known to have many health beneficial functions. It has been shown that this fraction of carbohydrate can increase the bifidobacterial population in the intestine and colon, resulting in a significant reduction of pathogenic bacteria. The role of milk oligosaccharides as a barrier against pathogens binding to the cell surface has recently been demonstrated. Milk oligosaccharides have the potential to produce immuno-modulation effects. It is also well known that oligosaccharides in milk have a significant influence on intestinal mineral absorption and in the formation of the brain and central nervous system. Due to its structural resemblance, bovine milk is considered to be the most potential source of oligosaccharides to produce the same effect of oligosaccharides present in human milk. This review describes the characteristics and potential health benefits of milk oligosaccharides as well as the prospects of oligosaccharides in bovine milk for use in functional foods.

Survival of Double-Microencapsulated Bifidobacterium breve in Milk in Simulated Gastric and Small Intestinal Conditions

  • Jung, Ji-Kang;Kil, Jeung-Ha;Kim, Sang-Kyo;Jeon, Jung-Tae;Park, Kun-Young
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.1
    • /
    • pp.58-63
    • /
    • 2007
  • Bifidobacteria are probiotic organisms that provide both flavor and health benefits when incorporated as live cultures into commercial dairy products. Because bifidobacteria are very sensitive to environmental conditions (acids, temperature, oxygen, bile salts, the presence of other cultures, etc.), their viability in human gastrointestinal tract is limited. The microencapsulation of bifidobacteria is a process to protect them against harsh environmental conditions, thereby increasing their viability while passing through human gastrointestinal tract. To confirm the survival rate of microencapsulated Bifidobacterium breve CBG-C2 in milk, their survival rate was compared with several kinds of free bifidobacteria and lactic acid bacteria in commercial yogurt products under simulated gastric and small intestinal conditions. Double-microencapsulation of the bacteria was employed to increase the survival rate during digestion. The outer layer was covered with starch and gelatin to endure gastric conditions, and the inner layer was composed of a hard oil for the upper small intestinal regions. Almost all microencapsulted bifidobacteria in the milk survived longer than the free bifidobacteria and lactic acid bacteria in the commericial yogurt products under the simulated gastric conditions. Numbers of surviving free bifidobacteria and lactic acid bacteria in the commercial products were significantly reduced, however, the viability of the microencapsulated bificobacteria in the milk remained quite stable under gastric and small intestine conditions over 3$\sim$6 hrs. Thus double-microencapsualtion of bifidobacteria in milk is a promising method for improving the survival of bifidobacteria during the digestive process.

Lactic Acid Bacteria Isolated from Human Breast Milk Improve Colitis Induced by 2,4,6-Trinitrobenzene Sulfonic Acid by Inhibiting NF-κB Signaling in Mice

  • Kyung-Joo Kim;Suhyun Kyung;Hui Jin;Minju Im;Jae-won Kim;Hyun Su Kim;Se-Eun Jang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.1057-1065
    • /
    • 2023
  • Inflammatory bowel disease (IBD), a chronic inflammatory disease, results from dysregulation of the immune responses. Some lactic acid bacteria (LAB), including Lactobacillus, alleviate IBD through immunomodulation. In this study, the anti-colitis effect of LAB isolated from human breast milk was investigated in a mouse model induced acute colitis with 2,4,6-trinitrobenzene sulfonic acid (TNBS). TNBS remarkably increased weight loss, colon shortening, and colonic mucosal proliferation, as well as the expression levels of inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-1β. Oral administration of LAB isolated from human breast milk resulted in a reduction in TNBS-induced colon shortening, as well as induced cyclooxygenase (COX)-2, nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-κB). In addition, LAB suppressed inflammatory cytokines such as TNF-α, IL-6, and IL-1β, and thus showed an effect of suppressing the level of inflammation induced by TNBS. Furthermore, LAB alleviated gut microbiota dysbiosis, and inhibited intestinal permeability by increasing the expression of intestinal tight junction protein including ZO-1. Collectively, these results suggest that LAB isolated from human breast milk can be used as a functional food for colitis treatment by regulating NF-κB signaling, gut microbiota and increasing expression of intestinal tight junction protein.

Nutritional Functions of Milk and Dairy Products in Improving Human Health

  • Chon, Jung-Whan;Kim, Hyunsook;Kim, Dong-Hyeon;Lee, Soo-Kyung;Kim, Hong-Seok;Yim, Jin-Hyuk;Song, Kwang-Young;Kim, Young-Ji;Kang, Il-Byung;Jeong, Dana;Park, Jin-Hyeong;Jang, Ho-Seok;Seo, Kun-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.145-155
    • /
    • 2016
  • Cow's milk and dairy products are elements of the human diet that could play an important role in improving human health. The macronutrients and micronutrients found in milk could supply the nutrients required to maintain human health. Among them, milk-derived bioactive peptides have been identified as potential ingredients found in health promoting functional foods. These bioactive peptides target diet-related chronic diseases, particularly non-communicable ones such as cardiovascular disease, diabetes and obesity. Additionally probiotics such as lactic acid bacteria (LAB) are can be considered live microorganisms that confer health benefits for the host-, when administered in adequate amounts. Further, the calcium, vitamin D, and protein content of milk and dairy products could play a role in proving bone health. The effect of milk and calcium on bone mineral density could prevent against fracture, osteoporosis and rickets. Furthermore, milk and dairy products also contain which factors that, which protect against dental caries (anti-cariogenic properties). This paper reviews the various nutritional functions of milk and dairy products in improving human health.

Probiotic isolates from unconventional sources: a review

  • Sornplang, Pairat;Piyadeatsoontorn, Sudthidol
    • Journal of Animal Science and Technology
    • /
    • v.58 no.7
    • /
    • pp.26.1-26.11
    • /
    • 2016
  • The use of probiotics for human and animal health is continuously increasing. The probiotics used in humans commonly come from dairy foods, whereas the sources of probiotics used in animals are often the animals' own digestive tracts. Increasingly, probiotics from sources other than milk products are being selected for use in people who are lactose intolerant. These sources are non-dairy fermented foods and beverages, non-dairy and non-fermented foods such as fresh fruits and vegetables, feces of breast-fed infants and human breast milk. The probiotics that are used in both humans and animals are selected in stages; after the initial isolation of the appropriate culture medium, the probiotics must meet important qualifications, including being non-pathogenic acid and bile-tolerant strains that possess the ability to act against pathogens in the gastrointestinal tract and the safety-enhancing property of not being able to transfer any antibiotic resistance genes to other bacteria. The final stages of selection involve the accurate identification of the probiotic species.

Changes in Gut Microbial Community of Pig Feces in Response to Different Dietary Animal Protein Media

  • Jeong, Yujeong;Park, Jongbin;Kim, Eun Bae
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1321-1334
    • /
    • 2020
  • Beef, pork, chicken and milk are considered representative protein sources in the human diet. Since the digestion of protein is important, the role of intestinal microflora is also important. Despite this, the pure effects of meat and milk intake on the microbiome are yet to be fully elucidated. To evaluate the effect of beef, pork, chicken and milk on intestinal microflora, we observed changes in the microbiome in response to different types of dietary animal proteins in vitro. Feces were collected from five 6-week-old pigs. The suspensions were pooled and inoculated into four different media containing beef, pork, chicken, or skim milk powder in distilled water. Changes in microbial communities were analyzed using 16S rRNA sequencing. The feces alone had the highest microbial alpha diversity. Among the treatment groups, beef showed the highest microbial diversity, followed by pork, chicken, and milk. The three dominant phyla were Proteobacteria, Firmicutes, and Bacteroidetes in all the groups. The most abundant genera in beef, pork, and chicken were Rummeliibacillus, Clostridium, and Phascolarctobacterium, whereas milk was enriched with Streptococcus, Lactobacillus, and Enterococcus. Aerobic bacteria decreased while anaerobic and facultative anaerobic bacteria increased in protein-rich nutrients. Functional gene groups were found to be over-represented in protein-rich nutrients. Our results provide baseline information for understanding the roles of dietary animal proteins in reshaping the gut microbiome. Furthermore, growth-promotion by specific species/genus may be used as a cultivation tool for uncultured gut microorganisms.

Biosensor System for the Detection and Assessment of Safety in Milk and Dairy Products (우유 및 유제품의 안전성 평가를 위한 바이오센서의 이용)

  • Kim, Hyoun-Wook;Han, Sang-Ha;Ham, Jun-Sang;Seol, Kuk-Hwan;Jang, Ae-Ra;Kim, Dong-Hun;Oh, Mi-Hwa
    • Journal of Dairy Science and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.51-57
    • /
    • 2011
  • Milk and dairy products are nutritionally one of the most important food in human health and the quality of raw milk is significantly important to ensure safety of dairy products. However, milk and dairy products are commonly related with chemical and microbial contaminations. Therefore, rapid and reliable detection of hazardous (e.g. pathogenic bacteria, pesticides, antibiotics, microbial toxins) in milk and dairy products is essential to ensure human health and food safety. Conventional methods for detection of food hazardous are mostly time-consuming to yield a results. Recently, biosensors have been focused as its rapidity and high sensitivity to analyse chemical and microbial hazardous from a variety of foods and environments. This study reviewed the recent trends and applications of biosensors as rapid detection method of hazardous in milk and dairy products.

  • PDF