• 제목/요약/키워드: human identification

Search Result 1,367, Processing Time 0.033 seconds

Molecular Cloning, Identification and Characteristics of a Novel Isoform of Carbamyl Phosphate Synthetase I in Human Testis

  • Huo, Ran;Zhu, Hui;Lu, Li;Ying, Lanlan;Xu, Min;Xu, Zhiyang;Li, Jianmin;Zhou, Zuomin;Sha, Jiahao
    • BMB Reports
    • /
    • v.38 no.1
    • /
    • pp.28-33
    • /
    • 2005
  • A gene coding a novel isoform of carbamyl phosphate synthetase I (CPS1) was cloned from a human testicular library. As shown by cDNA microarray hybridization, this gene was expressed at a higher level in human adult testes than in fetal testes. The full length of its cDNA was 3831 bp, with a 3149 bp open reading frame, encoding a 1050-amino-acid protein. The cDNA sequence was deposited in the GenBank (AY317138). Sequence analysis showed that it was homologous to the human CPS1 gene. The putative protein contained functional domains composing the intact large subunit of carbamoyl phosphate synthetase, thus indicated it has the capability of arginine biosynthesis. A multiple tissue expression profile showed high expression of this gene in human testis, suggesting the novel alternative splicing form of CPS1 may be correlated with human spermatogenesis.

Identification and Phylogeny of the Human Endogenous Retrovirus HERV-W LTR Family in Human Brain cDNA Library and Xq21.3 Region

  • KIM, HEUI-SOO;TIMOTHY J. CRO
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.508-513
    • /
    • 2002
  • Human endogenous retroviral long terminal repeats (LTRs) have been found to be coexpressed with sequences of genes located nearby. It has been suggested that the LTR elements have contributed to the structural change or genetic variation of human genome connected to various diseases. The HERV-W family has been identified in the cerebrospinal fluids and brains of individuals with schizophrenia. Using a cDNA library derived from a human brain, the HERV-W LTR elements were examined and five new LTR elements were identified. These elements were examined using a YAC clone panel from the Xq21.3 region linked to psychosis that was replicated on the Y chromosome after the separation of the chimpanzee and human lineages. Fourteen elements of the HERV-W LTR were identified in that region. Those LTR elements showed a high degree of sequence similarity ($91.8-99.5\%$) with previously reported HERV-W LTR. A phylogenetic tree obtained from the neighbor-joining method revealed that new HERV-W LTR elements were closely related to the AXt000960, AF072504, and AF072506 from the GenBank database. The data indicates that several copy numbers of the HERV-W LTR elements exist on the Xq21.3 region and are also expressed in the human brain. These LTR elements need to be further investigated as potential leads to neuropsychiatric diseases.

Qualitative Human Error Assessment for Gas Facilities (가스시설에서의 정성적 인적오류 평가)

  • Yoon Ik-Keun;Ha Jong-Mann;Oh Shin-kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.3
    • /
    • pp.70-77
    • /
    • 1998
  • This study proposes a method to facilitate the identification of human error in calling out such qualitative risk assessment in Gas plants. The main idea of this method is based on the scheme of existing qualitative risk assesment technique. The guidewords and tabular worksheet are suggested to be compatible in human error analysis. By using this method developed, the maintenance procedure of Governor system in gas valve station was analyzed to discover the human error in maintenance tasks. As a consequence, certain human errors were identified and the suggested approches proved to be adequate technique for the human error analysis.

  • PDF

Standard Terminology System Referenced by 3D Human Body Model

  • Choi, Byung-Kwan;Lim, Ji-Hye
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.2
    • /
    • pp.91-96
    • /
    • 2019
  • In this study, a system to increase the expressiveness of existing standard terminology using three-dimensional (3D) data is designed. We analyze the existing medical terminology system by searching the reference literature and perform an expert group focus survey. A human body image is generated using a 3D modeling tool. Then, the anatomical position of the human body is mapped to the 3D coordinates' identification (ID) and metadata. We define the term to represent the 3D human body position in a total of 12 categories, including semantic terminology entity and semantic disorder. The Blender and 3ds Max programs are used to create the 3D model from medical imaging data. The generated 3D human body model is expressed by the ID of the coordinate type (x, y, and z axes) based on the anatomical position and mapped to the semantic entity including the meaning. We propose a system of standard terminology enabling integration and utilization of the 3D human body model, coordinates (ID), and metadata. In the future, through cooperation with the Electronic Health Record system, we will contribute to clinical research to generate higher-quality big data.