• Title/Summary/Keyword: human errors

Search Result 726, Processing Time 0.024 seconds

Accuracy of three-dimensional cephalograms generated using a biplanar imaging system

  • Park, Ha-Yeon;Lee, Jae-Seo;Cho, Jin-Hyoung;Hwang, Hyeon-Shik;Lee, Kyung-Min
    • The korean journal of orthodontics
    • /
    • v.48 no.5
    • /
    • pp.292-303
    • /
    • 2018
  • Objective: Biplanar imaging systems allow for simultaneous acquisition of lateral and frontal cephalograms. The purpose of this study was to compare measurements recorded on three-dimensional (3D) cephalograms constructed from two-dimensional conventional radiographs and biplanar radiographs generated using a new biplanar imaging system with those recorded on cone-beam computed tomography (CBCT)-generated cephalograms in order to evaluate the accuracy of the 3D cephalograms generated using the biplanar imaging system. Methods: Three sets of lateral and frontal radiographs of 15 human dry skulls with prominent facial asymmetry were obtained using conventional radiography, the biplanar imaging system, and CBCT. To minimize errors in the construction of 3D cephalograms, fiducial markers were attached to anatomical landmarks prior to the acquisition of radiographs. Using the 3D $Ceph^{TM}$ program, 3D cephalograms were constructed from the images obtained using the biplanar imaging system (3D $ceph_{biplanar}$), conventional radiography (3D $ceph_{conv}$), and CBCT (3D $ceph_{cbct}$). A total of 34 measurements were obtained compared among the three image sets using paired t-tests and Bland-Altman plotting. Results: There were no statistically significant differences between the 3D $ceph_{biplanar}$ and 3D $ceph_{cbct}$ measurements. In addition, with the exception of one measurement, there were no significant differences between the 3D $ceph_{cbct}$ and 3D $ceph_{conv}$ measurements. However, the values obtained from 3D $ceph_{conv}$ showed larger deviations than those obtained from 3D $ceph_{biplanar}$. Conclusions: The results of this study suggest that the new biplanar imaging system enables the construction of accurate 3D cephalograms and could be a useful alternative to conventional radiography.

Development of Collision Avoidance Supporting System based on ECDIS (전자해도표시시스템 기반의 충돌회피 지원 시스템 개발)

  • Kim, Da-Jung;Ahn, Kyoungsoo;Lee, Tae-Il;Kim, Young Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.10a
    • /
    • pp.167-170
    • /
    • 2013
  • The objective of this paper is to describe the result of development of collision avoidance supporting system, based on the electronic chart display and information system(ECDIS). In real ship operations, collision accidents happen frequently due to human errors such as the lax vigilance, misinterpretation of international regulations for preventing collisions at sea (COLREGs). We developed a system which will help to avoid these kind of accidents. This system can automatically recognize the risk of collisions, generate the safe alternative routes that comply with COLREGs, and then deliver the results into auto pilot. A virtual simulation assuming progressive collision situations revealed the usefulness of this system.

  • PDF

Evaluating Service Reliability focused on Failure Modes (실패모드에 근거한 서비스 신뢰도 평가모델)

  • Oh, Hyung-Sool
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.7 no.3
    • /
    • pp.133-141
    • /
    • 2012
  • Service and manufacturing companies' efforts are increasingly focused on utilizing services to satisfy customers' needs and survive in today's competitive market environment. The value of services depends mainly on service reliability that is identified by satisfaction derived from the relationship between customer and service provider. In this paper, we extend concepts from the failure modes and effects analysis of tangible systems to services. We use an event-based process model to facilitate service design and represent the relationships between functions and failures in a service. The objective of this research is to propose a method for evaluating service reliability based on service processes using fuzzy failure mode effects analysis (FMEA) and grey theory. We define the failure mode of service as interaction ways that can be failed in a service delivery process. The fuzzy set theory is used to characterize service reliability based on linguistic terms during FMEA. Grey theory is employed to determine the degree of relation and ranking among risk factors that are represented as potential failure causes. To demonstrate implementation of the proposed method, we use a case study involving a typical automotive service operation.

  • PDF

Photon dose calculation of pencil beam kernel based treatment planning system compared to the Monte Carlo simulation

  • Cheong, Kwang-Ho;Suh, Tae-Suk;Kim, Hoi-Nam;Lee, Hyoung-Koo;Choe, Bo-Young;Yoon, Sei-Chul
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.291-293
    • /
    • 2002
  • Accurate dose calculation in radiation treatment planning is most important for successful treatment. Since human body is composed of various materials and not an ideal shape, it is not easy to calculate the accurate effective dose in the patients. Many methods have been proposed to solve the inhomogeneity and surface contour problems. Monte Carlo simulations are regarded as the most accurate method, but it is not appropriate for routine planning because it takes so much time. Pencil beam kernel based convolution/superposition methods were also proposed to correct those effects. Nowadays, many commercial treatment planning systems, including Pinnacle and Helax-TMS, have adopted this algorithm as a dose calculation engine. The purpose of this study is to verify the accuracy of the dose calculated from pencil beam kernel based treatment planning system Helax-TMS comparing to Monte Carlo simulations and measurements especially in inhomogeneous region. Home-made inhomogeneous phantom, Helax-TMS ver. 6.0 and Monte Carlo code BEAMnrc and DOSXYZnrc were used in this study. Dose calculation results from TPS and Monte Carlo simulation were verified by measurements. In homogeneous media, the accuracy was acceptable but in inhomogeneous media, the errors were more significant.

  • PDF

Optical Magnification Should Be Mandatory for Microsurgery: Scientific Basis and Clinical Data Contributing to Quality Assurance

  • Schoeffl, Harald;Lazzeri, Davide;Schnelzer, Richard;Froschauer, Stefan M.;Huemer, Georg M.
    • Archives of Plastic Surgery
    • /
    • v.40 no.2
    • /
    • pp.104-108
    • /
    • 2013
  • Background Microsurgical techniques are considered standard procedures in reconstructive surgery. Although microsurgery by itself is defined as surgery aided by optical magnification, there are no guidelines for determining in which clinical situations a microscope or loupe should be used. Therefore, we conducted standardized experiments to objectively assess the impact of optical magnification in microsurgery. Methods Sixteen participants of microsurgical training courses had to complete 2 sets of experiments. Each set had to be performed with an unaided eye, surgical loupes, and a regular operating microscope. The first set of experiments included coaptation of a chicken femoral nerve, and the second set consisted of anastomosing porcine coronary arteries. Evaluation of the sutured nerves and vessels were performed by 2 experienced microsurgeons using an operating microscope. Results The 16 participants of the study completed all of the experiments. The nerve coaptation and vascular anastomoses exercises showed a direct relationship of error frequency and lower optical magnification, meaning that the highest number of microsurgical errors occurred with the unaided eye. For nerve coaptation, there was a strong relationship (P<0.05) between the number of mistakes and magnification, and this relationship was very strong (P<0.01) for vascular anastomoses. Conclusions We were able to prove that microsurgical success is directly related to optical magnification. The human eye's ability to discriminate potentially important anatomical structures is limited, which might be detrimental for clinical results. Although not legally mandatory, surgeries such as reparative surgery after hand trauma should be conducted with magnifying devices for achieving optimal patient outcomes.

Positive and Negative Effects of IT on Cancer Registries

  • Mohammadzadeh, Niloofar;Safdari, Reza;Rahimi, Azin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4455-4457
    • /
    • 2013
  • In the new millennium people are facing serious challenges in health care, especially with increasing non-communicable diseases (NCD). One of the most common NCDs is cancer which is the leading cause of death in developed countries and in developing countries is the second cause of death after heart diseases. Cancer registry can make possible the analysis, comparison and development of national and international cancer strategies and planning. Information technology has a vital role in quality improvement and facility of cancer registries. With the use of IT, in addition to gaining general benefits such as monitoring rates of cancer incidence and identifying planning priorities we can also gain specific advantages such as collecting information for a lifetime, creating tele medical records, possibility of access to information by patient, patient empowerment, and decreasing medical errors. In spite of the powerful role of IT, we confront various challenges such as general problems, like privacy of the patient, and specific problems, including possibility of violating patients rights through misrepresentation, omission of human relationships, and decrease in face to face communication between doctors and patients. By implementing appropriate strategies, such as identifying authentication levels, controlling approaches, coding data, and considering technical and content standards, we can optimize the use of IT. The aim of this paper is to emphasize the need for identifying positive and negative effects of modern IT on cancer registry in general and specific aspects as an approach to cancer care management.

Error Correction of Real-time Situation Recognition using Smart Device (스마트 기기를 이용한 실시간 상황인식의 오차 보정)

  • Kim, Tae Ho;Suh, Dong Hyeok;Yoon, Shin Sook;Ryu, KeunHo
    • Journal of Digital Contents Society
    • /
    • v.19 no.9
    • /
    • pp.1779-1785
    • /
    • 2018
  • In this paper, we propose an error correction method to improve the accuracy of human activity recognition using sensor event data obtained by smart devices such as wearable and smartphone. In the context awareness through the smart device, errors inevitably occur in sensing the necessary context information due to the characteristics of the device, which degrades the prediction performance. In order to solve this problem, we apply Kalman filter's error correction algorithm to compensate the signal values obtained from 3-axis acceleration sensor of smart device. As a result, it was possible to effectively eliminate the error generated in the process of the data which is detected and reported by the 3-axis acceleration sensor constituting the time series data through the Kalman filter. It is expected that this research will improve the performance of the real-time context-aware system to be developed in the future.

Development of a Wall-climbing Welding Robot for Draft Mark on the Curved Surface (선수미 흘수마크 용접을 위한 벽면이동로봇 개발)

  • Lee, Jae-Chang;Kim, Ho-Gu;Kim, Se-Hwan;Ryu, Sin-Wook
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2006.09a
    • /
    • pp.112-121
    • /
    • 2006
  • The vertical displacement of a ship on the basis of the sea level is an important parameter for its stability and control. To indicate the displacement on operating conditions, "draft marks" are carved on the hull of the ship in various ways. One of the methods is welding. The position, shape and size of the marks are specified on the shipbuilding rules by classification societies to be checked by shipbuilders. In most cases, high-skilled workers do the welding along the drawing for the marks and welding bead becomes the marks. But the inaccuracies due to human errors and high labor cost increase the needs for automating the work process of the draft marks. In the preceding work, an indoor robot was developed for automatic marking system on flat surfaces and the work proved that the robot welding was more effective and accurate than manual welding. However, many parts of the hull structure constructed at the outdoor are cowed shapes, which is beyond the capability of the robot developed for the indoor works on the flat surface. The marking on the curved steel surface requiring the 25m elevations is one of the main challenges to the conventional robots. In the present paper, the robot capable of climbing vertical curved steel surfaces and performing the welding at the marked position by effectively solving the problems mentioned earlier is presented.

  • PDF

Railroad accident analysis and countermeasure (철도사고 분석과 대책)

  • Ahn, Chang-Geun;Lee, Won-Young
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.658-670
    • /
    • 2007
  • Most railroad accidents are due to human errors. In particular, most of the causes of these accidents are faults of an engine driver, such as lack of signal confirmation, insecure braking, driving by guess or force of habit. This paper identifies a problem(s) by analyzing accidents for the past 10 years and also seeks a solution to train good engine drivers in order to prevent railroad accidents. In summary, what is needed are: 1) proper placement of various manpower, 2) proper training of engine drivers, 3) proper legislation for a 2-man on board system, and 4) proper reformation of personnel management.

  • PDF

Evaluation of the Head Mouse System using Gyro-and Opto-Sensors (각속도 및 광센서를 이용한 헤드 마우스의 평가)

  • Park, Min-Je;Kim, Soo-Chan
    • Journal of the HCI Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.1-6
    • /
    • 2010
  • In this research, we designed the head mouse system for disabled and gamers, a mouse controller which can be controlled by head movements and eye blinks only, and compared its performance with other regular mouse controller systems. The head mouse was moved by a gyro-sensor, which can measure an angular rotation of a head movement, and the eye blink was used as a clicking event of the mouse system. Accumulated errors caused by integral, which was a problem that previous head mouse system had, were removed periodically, and treated as dead zones in the non-linear relative point graph, and direct mouse point control was possible using its moving distance and acceleration calculation. We used the active light sources to minimize the influence of the ambient light changes, so that the head mouse was not affected by the change in external light source. In a comparison between the head mouse and the gazing tracking mouse (Quick Glance), the above method resulted about 21% higher score on the clicking event experiment called "20 clicks", about 25% higher on the dasher experiment, and about 37% higher on on-screen keyboard test respectively, which concludes that the proposed head mouse has better performance than the standard mouse system.

  • PDF