• Title/Summary/Keyword: human embryo

Search Result 429, Processing Time 0.031 seconds

Analysis of human HoxA gene control region and its effects on anterior-posterior axial pattern formation using transgenic mouse embryo (Transgenic mouse embryo를 이용한 human HoxA 유전자의 조절부위 분석과 전후축 형태형성(anterior-posterior axial pattern formation)에 미치는 영향)

  • Jang, Seung-ik;Min, Won-gi;Park, Jong-hoon;Lee, Chul-sang;Lee, Kyung-kwang;Lee, Young-won;Jun, Moo-hyung;Kim, Myoung-hee
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.1
    • /
    • pp.95-105
    • /
    • 1995
  • The human homolog of position specific element of mouse Hoxa-7 was studied using transgene. It contains a 1.1 kb human DNA (HCR)- a homolog to the intergenic region between Hoxa-7 and -9, which directs the position specific expression of Hoxa-7-, tk promoter, LacZ (${\beta}$-galactosidase) gene as a reporter, and polyadenylation signal of SV40 large T antigen. It was injected into the mice embryos, and the resulting transgenic embryos were analysed through PCR as well as genomic Southern blotting with placenta DNA. Out of 20 embryos analysed, two were transgenic. Among them, one transgenic embryo expressed transgene when stained with X-gal. The expression pattern was in analogy to that of the mouse Hoxa-7, showing spatially restricted expression pattern, Since the expression of ${\beta}$-galactosidase is regulated by the upstream human HCR sequence, it implies that the HCR is the plausible position specific regulatory element of human.

  • PDF

Effects of Different Infusion Frequency of Liquid Nitrogen on Human Embryo Development and Pregnancy Rates after Freezing and Thawing (인간 배아 동결 해빙시 액체질소의 분사속도가 배아 발달 및 임신에 미치는 영향)

  • Kim, Young-Ah;Seo, Seong-Seog;Kim, Mi-Ran;Hwang, Kyung-Joo;Park, Dong-Wook;Jo, Mi-Yeong;Ryu, Hee-Suk
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.28 no.4
    • /
    • pp.287-293
    • /
    • 2001
  • Objective : To investigate the efficacy of high infusion frequency of liquid nitrogen on pregnancy in human embryo after freezing and thawing. Materials and Methods: 150 infertile patients underwent 162 consecutive thawing-ET cycles. In the high infusion frequency group (Group A), 47 patients (50 cycles) underwent cryopreservation with high infusion frequency of liquid nitrogen. In the low infusion frequency group (Group B), 103 patients (112 cycles) underwent cryopreservation with low infusion frequency of liquid nitrogen. We analyzed the clinical characteristics, fertilization rates, development of embryo, good quality embryo ratio, implantation rates, and pregnancy rates between these two groups. Results: There was no difference between the groups with regard to clinical characteristics (mean age, infertility duration, infertility factors, hormone profile), mean number of oocyte retrieval, fertilization rates, and mean embryo number of transfers. The survival rates in group A was 64.9% (228 of 350 embryos), and among the 228 embryos 190 embryos (83.3%) which progressed to the two- to eight-cell stage. After thawing, the embryo numbers were 65 (34.2%), 29 (15.3%), 35 (18.4%), and 37 (19.5%) of grades 1, 2, 3, and above 4, respectively. The survival rates in group B was 63.8% (482 of 755 embryos), and among the 482 embryos 465 embryos (96.5%) which progressed to the two- to eight-cell stage. After thawing, the embryo numbers were 106 (22.8%), 94 (20.2%), 89 (19.1%), and 112 (24.1%) of grades 1, 2, 3, and above 4, respectively. There was no difference in embryo quality change after the freezing-thawing procedure between the groups. Implantation rates (31.1% vs. 34.3%) were not significant. However hCG positive rates in group A (40%) were higher than group B, but not statistically significant. Clinical pregnancy rate (26% vs. 25.9%), on going pregnancy rates (>20 weeks) were not significant (26% vs. 25%). Conclusion: We compared embryo quality change, survival rates, and pregnancy rates between high infusion frequency group and low infusion frequency group and the results were similar between the two groups. Therefore, high infusion frequency of liquid nitrogen for cryopreservation is a worthy method to preserve in human embryos.

  • PDF

Effect of Mature Human Follicular Fluid on the Development of Mouse Embryos in vitro (성숙난포액을 이용한 생쥐배아의 발달에 관한 연구)

  • Park, S.Y.;Lee, J.J.;Kim, S.H.;Ku, P.S.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.19 no.2
    • /
    • pp.125-131
    • /
    • 1992
  • The possible effect of human follicular fluid(hFF) on the growth and development of fertilized oocytes and embryos is important because the fallopian tubes are exposed to FF after follicular rupture and the processes of fertilization and embryo cleavage occur inside the fallopian tubes. Previously, it was suggested that human FF might adversely affect on the development of early mouse embryos. In order to investigate the effect of hFF on the development of embryos, early mouse embryos were cultured in media containing various protein sources as bovine serum albumin(BSA), fetal cord serum(FCS) and FF. And we evaluated the development of early mouse embryos in terms of the morphology, cleavage rate, and cell count of blastcysts. There were no significant differences in the morula and blstocyst formation rates of 2-cell mouse embryos cultured in the media containg three different protein sources and three different concentrations of FF. The blastocyst formation rate of 1-cell mouse embryo cultured in FF group was significantly higher than that cultured in BSA group(P<0.05). The morula and blastocyst formation rates of 2-cell mouse embryos of the group cultured in the media containing FF were comparable with those of other two groups, in addition, the cell count of blastocysts of FF group in the 2-cell embryo culture was higher than those of BSA group and HCS group(P<0.01), and this finding was also noted in 1-cell embryo culture. There was no difference in the morula and blastocyst formation rates of the 2-cell mouse embryos cultured in the media containing different concentrations of FF. These results suggest that mature human follicular fluid has no inhibitory activity on the development of early mouse embryos even in high concentration and may be a good protein source which is positively associated with the development of mouse embryos in vitro especially in 1 cell embryo culture.

  • PDF