• 제목/요약/키워드: human elbow motion

검색결과 43건 처리시간 0.021초

Experimental study on impedance characteristics of a human upper link in a positioning motion

  • Kobayashi, Hideaki;Inooka, Hikaru;Ikeura, Ryojun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.247-250
    • /
    • 1996
  • In this paper, we have examined the impedance characteristics of a tipper link of human being in a positioning motion. Firstly, we have shown the characteristics of the human arm using a bilinear model. From the bilinear model, we have observed that both the driving torque of the forearm and the visco-elasticity of the elbow joint can be controlled by muscles, respectively. Then, we have defined several indexes to show the impedance characteristics. Using the proposed indexes, we have examined the impedance characteristics in the positioning operation. As a result, we can not observe the difference of the impedance characteristics, even if the ease of the positioning motion is varied.

  • PDF

탄성 줄을 이용한 팔꿈치 관절 재활 분석 (Analysis on Rehabilitation of Elbow Joint Using Elastic String)

  • 김병호
    • 한국지능시스템학회논문지
    • /
    • 제26권3호
    • /
    • pp.196-201
    • /
    • 2016
  • 본 논문에서는 인간의 팔꿈치 관절의 기능을 활성화하기 위한 강성 기반 재활 메커니즘의 특성을 분석하 고자 한다.여기서,팔굼치 관절의 재활을 위한 도구는 탄성 줄을 사용하고, 사용된 줄은 선형 스프링으로 모델링하여 강성값으로 나타낸다. 이러한 메커니즘을 이용한 팔꿈치 관절 재활 훈련을 효과적으로 하기 위해서는 줄의 강성값에 따라 팔꿈치 관절에 가용할 수 있는 토오크 특성을 분석할 필요가 있다. 이러한 관점에서 다양한 시뮬레이션을 통하여 탄성 줄의 강성값 설정에 따른 팔꿈치 관절의 토오크 패턴 및 범위를 사전에 정의된 팔꿈치 관절의 운동 경로에 대하여 확인한다. 결과적으로, 이러한 강성 기반 재활 메커니즘이 팔꿈치 관절의 효과적인 재활을 수행하는데 유용하게 활용될 수 있음을 보인다.

3차원 동작분석법을 활용한 골프웨어 평가를 위한 기초연구 - 상체 동작범위를 중심으로 - (Evaluation Method for Fit of Golf wears based on 3D Motion Analysis - Focus on motion range of upper body -)

  • 정혜원;신주영;남윤자
    • 한국의류산업학회지
    • /
    • 제18권3호
    • /
    • pp.338-350
    • /
    • 2016
  • The purpose of this study is to analyze joint angle for a range of swing motion derived through 3D motion analysis in order to design the ergonomic golf wear, use it for evaluation method of apparel fit to improve exercise functionality and provide the basic materials necessary for designing clothes. In order to do this, the subjects for this study were 3 men of age 20s. The data for a range of motion of golf swing were collected by using equipment for 3D motion analysis and then were used for analysis of joint angles and evaluation method of apparel fit. Range of motion was derived through 3D motion analysis of golf swing motion and joint angles for items of joint motion item and of X, Y, and Z-axis were calculated, respectively. In order to set the evaluation questions for evaluation of apparel fit, to find a range of motion at the maximal value and the minimal value of swing motion. As a result, during the swinging motion, neck extension, right shoulder extension, right/left elbow extension, right/left elbow supination did not appear. Items of joint motion showing the maximum at range of each swing motion were applied into 55 questions and consisted. The results of this study were meaningful as a basic study to apply 3D motion analysis to the fashion industry. It's expected to be used to design functional clothing.

표면 근전도 신호처리 기반 인간 팔 동작의 추종 알고리즘 (Human Arm Motion Tracking based on sEMG Signal Processing)

  • 최영진;유현재
    • 제어로봇시스템학회논문지
    • /
    • 제13권8호
    • /
    • pp.769-776
    • /
    • 2007
  • This paper proposes the human arm motion tracking algorithm based on the signal processing for surface EMG (electromyogram) sensors attached on both upper arm and shoulder. The signals acquired by using surface EMG sensors are processed with choosing the maximum in a short period, taking the absolute value, and filtering noises out with a low-pass filter. The processed signals are directly used for the motion generation of virtual arm in real time simulator. The virtual arm of simulator has two degrees of freedom and complies with the flexion and extension motions of elbow and shoulder. Also, we show the validity of the suggested algorithms through the experiments.

상지 근력지원용 웨어러블 로봇을 위한 명령신호 생성 기법 개발 (Development of Command Signal Generating Method for Assistive Wearable Robot of the Human Upper Extremity)

  • 이희돈;유승남;이승훈;장재호;한정수;한창수
    • 제어로봇시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.176-183
    • /
    • 2009
  • This paper proposes command signal generating method for a wearable robot using the force as the input signal. The basic concept of this system pursues the combination of the natural and sophisticated intelligence of human with the powerful motion capability of the robot. We define a task for the command signal generation to operate with the human body simultaneously, paying attention to comfort and ease of wear. In this study, we suggest a basic exoskeleton experimental system to evaluate a HRI(Human Robot Interface), selecting interfaces of arm braces on both wrists and a weight harness on the torso to connect the robot and human. We develop the HRI to provide a command for the robot motion. It connects between the human and the robot with the multi-axis load-cell, and it measures the relative force between the human and the robot. The control system calculates the trajectory of end-effector using this force signal. In this paper, we verify the performance of proposed system through the motion of elbow E/F(Extension/Flexion), the shoulder E/F and the shoulder Ab/Ad (Abduction/Adduction).

Computerized Human Body Modeling and Work Motion-capturing in a 3-D Virtual Clothing Simulation System for Painting Work Clothes Development

  • Park, Gin Ah
    • 패션비즈니스
    • /
    • 제19권3호
    • /
    • pp.130-143
    • /
    • 2015
  • By studying 3-D virtual human modeling, motion-capturing and clothing simulation for easier and safer work clothes development, this research aimed (1) to categorize heavy manufacturing work motions; (2) to generate a 3-D virtual male model and establish painting work motions within a 3-D virtual clothing simulation system through computerized body scanning and motion-capturing; and finally (3) to suggest simulated clothing images of painting work clothes developed based on virtual male avatar body measurements by implementing the work motions defined in the 3-D virtual clothing simulation system. For this, a male subject's body was 3-D scanned and also directly measured. The procedures to edit a 3-D virtual model required the total body shape to be 3-D scanned into a digital format, which was revised using 3-D Studio MAX and Maya rendering tools. In addition, heavy industry workers' work motions were observed and recorded by video camera at manufacturing sites and analyzed to categorize the painting work motions. This analysis resulted in 4 categories of motions: standing, bending, kneeling and walking. Besides, each work motion category was divided into more detailed motions according to sub-work posture factors: arm angle, arm direction, elbow bending angle, waist bending angle, waist bending direction and knee bending angle. Finally, the implementation of the painting work motions within the 3-D clothing simulation system presented the virtual painting work clothes images simulated in a dynamic mode.

근 부피 센서를 이용한 인체 팔꿈치 관절의 동작 토크 추정 (Torque Estimation of the Human Elbow Joint using the MVS (Muscle Volume Sensor))

  • 이희돈;임동환;김완수;한정수;한창수;안재용
    • 한국정밀공학회지
    • /
    • 제30권6호
    • /
    • pp.650-657
    • /
    • 2013
  • This study uses a muscle activation sensor and elbow joint model to develop an estimation algorithm for human elbow joint torque for use in a human-robot interface. A modular-type MVS (Muscle Volume Sensor) and calibration algorithm are developed to measure the muscle activation signal, which is represented through the normalization of the calibrated signal of the MVS. A Hill-type model is applied to the muscle activation signal and the kinematic model of the muscle can be used to estimate the joint torques. Experiments were performed to evaluate the performance of the proposed algorithm by isotonic contraction motion using the KIN-COM$^{(R)}$ equipment at 5, 10, and 15Nm. The algorithm and its feasibility for use as a human-robot interface are verified by comparing the joint load condition and the torque estimated by the algorithm.

직물 센서의 모양과 부착 위치가 사지 동작 센싱 의류의 센싱 성능에 미치는 영향 (Effect of the Shape and Attached Position of Fabric Sensors on the Sensing Performance of Limb-motion Sensing Clothes)

  • 조현승;양진희;전동진;이주현
    • 감성과학
    • /
    • 제20권3호
    • /
    • pp.141-150
    • /
    • 2017
  • 본 연구에서는 E-textile 기반 신축성 센서의 모양과 부착 위치가 동작 센싱 성능에 미치는 영향을 분석하고, 이를 통해 인체 동작 센싱에 가장 적합한 의복 구조 요건을 규명하고자 하였다. 실험 대상 아동에게 센서의 모양과 부착 위치에 따라 조작된 실험복을 착의시킨 후 60 deg/sec의 속도로, $60^{\circ}$, $90^{\circ}$, $120^{\circ}$의 동작 각도별로 팔과 다리의 굽힘, 폄 동작 의한 직물 센서의 신장과 수축에 따른 전압의 변화량을 측정하였으며, 가속도 센서를 함께 부착하여 동작의 일치도를 검증하였다. 또한 아동의 모형 팔과 다리를 제작하여 이를 대상으로 동일한 실험을 수행함으로써 인체의 팔, 다리의 동작 실험 결과와 비교하였다. 분석 결과 센서의 모양에서는 모형 대상 실험과 아동 대상 실험 모두에서 보트형의 센서 보다 장방형의 센서가 더 균일하고 안정적인 경향을 보여 재현성과 신뢰성이 높은 것으로 나타났다. 센서의 부착 위치는 모형 대상 실험에서는 팔꿈치와 무릎의 관절부로부터 4 cm 아래 지점에 부착된 경우, 아동 대상 실험에서는 팔꿈치와 무릎의 관절부에 위치했을 때 재현성과 신뢰성이 더 높았다. 본 연구에서는 아동의 사지 동작 측정에 적합한 센서를 개발하고 동작 센싱에 적합한 센서의 모양과 부착 위치의 조건을 분석하였으며, 의복에 통합된 유연한 직물 센서를 활용하여 인체 부위별 동작 센싱이 가능하다는 것을 규명하였다.

소프트 골프 스윙 동작을 위한 인체 시뮬레이션의 운동역학 분석 (Kinetic Analysis of Human Simulation for the Soft Golf Swing)

  • 곽기영;유미;소하주;김성현;김남균;김동욱
    • 대한의용생체공학회:의공학회지
    • /
    • 제31권2호
    • /
    • pp.141-150
    • /
    • 2010
  • The purpose of this study was to analyze the golf swing motion for a soft golf clubs and regular golf club. Soft golf is a newly developed recreational sports for all ages, including the elderly and the beginners of golf. To quantify the effect of using soft golf club, which much lighter club than regular clubs, a motion analysis has been performed using a 3D optoelectric motion tracking system that utilizes active infrared LEDs and near-infrared sensors. The subject performed swing motion using a regular golf club and a soft golf club in turn. The obtained motion capture data was used to build a 3D computer simulation model to obtain left wrist, elbow shoulder and lumbar joint force and torque using inverse and forward dynamics calculations. The joint force and torque during soft golf swing were lower than regular golf swing. The analysis gave better understanding of the effectiveness of the soft golf club.

나선축 개념을 이용한 팔꿈치 관절의 3차원 회전축 측정과 측정 결과를 반영한 인체 팔 모델의 개발 (Determination of the Elbow Transverse Joint Using the Helical Axis Concept and its Application to the Development of a Kinematic Arm Model)

  • 우범영;정의승;윤명환
    • 대한산업공학회지
    • /
    • 제26권1호
    • /
    • pp.73-80
    • /
    • 2000
  • To determine the exact direction and location of the human joint in motion is crucial in developing a more accurate human model and producing a more fitting artificial joint. There have been several reports on the biomechanical analysis of the joint to determine the anatomy and movement of joints. However, all the previous researches were made in vitro study, that is, they investigated the passive movement of the joint from cadavers and the suggested location of the joint axis was difficult to make practical applications due to the lack of the direction of joint axis. Also, in many biomechanical models, each joint axis is assumed to lie horizontally or vertically to the adjacent links. Such an assumption causes inherent inaccuracy. In this study, the direction and location of the transverse elbow axis was obtained with respect to the global coordinate system whose origin is on the lateral epicondyle of the humerus. The suggested result based on the global coordinate system lying on the external landmark will be helpful to understand the information of the axis and to make an application. From the experiments conducted for five subjects, the direction and location of the elbow transverse joint was determined for each subject by the helical axis method. A statistical validation was also performed to confirm the result. Finally, the result was applied to develop a simple elbow model which is a part of the kinematic arm model. The simple elbow movement model was developed to validate the significance of the result and the kinematic arm model was able to describe the geometry of any complex linkage system. As a result, the errors incurred from the proposed model were significantly reduced when compared to the ones from the previous approach.

  • PDF