• Title/Summary/Keyword: human detecting

Search Result 615, Processing Time 0.026 seconds

Studies on the theory of Oriental Medicine Diagnosis and applicatin of Moire topography (한의학적(韓醫學的) 진단원리(診斷原理)와 모아레 토포그래피의 응용(應用))

  • Lee, Jae-Won
    • Korean Journal of Oriental Medicine
    • /
    • v.1 no.1
    • /
    • pp.273-287
    • /
    • 1995
  • Moire topography, a simple technique for three-dimensional quantitation, was used to provide interference fringe photographs of the human back with sufficient accuracy to be used for detecting patient with asymmetry due to scoliosis, the disease of cervix and lumbar, muscle dysfunction. Contour lines are a suitable and widely accepted method of describing a three-dimensional surface. In the moire technique, contour lines of an object are produced as interference fringes while the object is illuminated by a spotlight through a special grating. The fringe pattern is produced by the interference of the grating and its shadow on the object. A photograph of a moire pattern on the human back will permit an assessment of the overall body shape and the symmetry of the back. This study uses shadow moire topography. Moire topography provides a non-invasive technique for quantifying the shape of the human body. In the use of moire topography for the Oriental Medicine Diagnosis, the strength of moire lies in the ablility to detect change due to deformity of human body.

  • PDF

Face Detection Based on Thick Feature Edges and Neural Networks

  • Lee, Young-Sook;Kim, Young-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.12
    • /
    • pp.1692-1699
    • /
    • 2004
  • Many researchers have developed various techniques for detection of human faces in ordinary still images. Face detection is the first imperative step of human face recognition systems. The two main problems of human face detection are how to cutoff the running time and how to reduce the number of false positives. In this paper, we present frontal and near-frontal face detection algorithm in still gray images using a thick edge image and neural network. We have devised a new filter that gets the thick edge image. Our overall scheme for face detection consists of two main phases. In the first phase we describe how to create the thick edge image using the filter and search for face candidates using a whole face detector. It is very helpful in removing plenty of windows with non-faces. The second phase verifies for detecting human faces using component-based eye detectors and the whole face detector. The experimental results show that our algorithm can reduce the running time and the number of false positives.

  • PDF

An Analysis of 2D Positional Accuracy of Human Bodies Detection Using the Movement of Mono-UWB Radar

  • Kiasari, Mohammad Ahangar;Na, Seung You;Kim, Jin Young
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.149-157
    • /
    • 2014
  • This paper considers the ability of counting and positioning multi-targets by using a mobile UWB radar device. After a background subtraction process, distinguishing between clutters and human body signals, the position of targets will be computed using weighted Gaussian mixture methods. While computer vision offers many advantages, it has limited performance in poor visibility conditions (e.g., at night, haze, fog or smoke). UWB radar can provide a complementary technology for detecting and tracking humans, particularly in poor visibility or through-wall conditions. As we know, for 2D measurement, one method is the use of at least two receiver antennas. Another method is the use of one mobile radar receiver. This paper tried to investigate the position detection of the stationary human body using the movement of one UWB radar module.

A Study on Mouth Mouse

  • Han, Chan-Myung;Park, Joon-Ho;Kim, Hwi-Won;Yoon, Young-Woo
    • 한국정보컨버전스학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.173-176
    • /
    • 2008
  • Among human body parts, the human face has been studied the most actively for the interlace between humans and computers because face has statistic consistency in color, shape and texture. Those characteristics make computers detect and track human faces in images robustly and accurately. The human face consists of eyes, nose, mouth, eyebrows and other features, Detecting and tracking each feature have been researched. The open mouth is the largest in size and the easiest to detect among them, In this study, we present a system which can move mouse pointer using the position and state of the mouth.

  • PDF

Spatiotemporal Patched Frames for Human Abnormal Behavior Classification in Low-Light Environment (저조도 환경 감시 영상에서 시공간 패치 프레임을 이용한 이상행동 분류)

  • Widia A. Samosir;Seong G. Kong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.634-636
    • /
    • 2023
  • Surveillance systems play a pivotal role in ensuring the safety and security of various environments, including public spaces, critical infrastructure, and private properties. However, detecting abnormal human behavior in lowlight conditions is a critical yet challenging task due to the inherent limitations of visual data acquisition in such scenarios. This paper introduces a spatiotemporal framework designed to address the unique challenges posed by low-light environments, enhancing the accuracy and efficiency of human abnormality detection in surveillance camera systems. We proposed the pre-processing using lightweight exposure correction, patched frames pose estimation, and optical flow to extract the human behavior flow through t-seconds of frames. After that, we train the estimated-action-flow into autoencoder for abnormal behavior classification to get normal loss as metrics decision for normal/abnormal behavior.

Development of the MVS (Muscle Volume Sensor) for Human-Machine Interface (인간-기계 인터페이스를 위한 근 부피 센서 개발)

  • Lim, Dong Hwan;Lee, Hee Don;Kim, Wan Soo;Han, Jung Soo;Han, Chang Soo;An, Jae Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.870-877
    • /
    • 2013
  • There has been much recent research interest in developing numerous kinds of human-machine interface. This field currently requires more accurate and reliable sensing systems to detect the intended human motion. Most conventional human-machine interface use electromyography (EMG) sensors to detect the intended motion. However, EMG sensors have a number of disadvantages and, as a consequence, the human-machine interface is difficult to use. This study describes a muscle volume sensor (MVS) that has been developed to measure variation in the outline of a muscle, for use as a human-machine interface. We developed an algorithm to calibrate the system, and the feasibility of using MVS for detecting muscular activity was demonstrated experimentally. We evaluated the performance of the MVS via isotonic contraction using the KIN-COM$^{(R)}$ equipment at torques of 5, 10, and 15 Nm.

An Effective Anomaly Detection Approach based on Hybrid Unsupervised Learning Technologies in NIDS

  • Kangseok Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.494-510
    • /
    • 2024
  • Internet users are exposed to sophisticated cyberattacks that intrusion detection systems have difficulty detecting. Therefore, research is increasing on intrusion detection methods that use artificial intelligence technology for detecting novel cyberattacks. Unsupervised learning-based methods are being researched that learn only from normal data and detect abnormal behaviors by finding patterns. This study developed an anomaly-detection method based on unsupervised machines and deep learning for a network intrusion detection system (NIDS). We present a hybrid anomaly detection approach based on unsupervised learning techniques using the autoencoder (AE), Isolation Forest (IF), and Local Outlier Factor (LOF) algorithms. An oversampling approach that increased the detection rate was also examined. A hybrid approach that combined deep learning algorithms and traditional machine learning algorithms was highly effective in setting the thresholds for anomalies without subjective human judgment. It achieved precision and recall rates respectively of 88.2% and 92.8% when combining two AEs, IF, and LOF while using an oversampling approach to learn more unknown normal data improved the detection accuracy. This approach achieved precision and recall rates respectively of 88.2% and 94.6%, further improving the detection accuracy compared with the hybrid method. Therefore, in NIDS the proposed approach provides high reliability for detecting cyberattacks.

Component-based density propagation for human body tracking (인체 추적을 위한 구성요소 기반 확률 전파)

  • Shin, Young-Suk;Cha, Eun-Mi;Lee, Kyoung-Mi
    • Journal of Internet Computing and Services
    • /
    • v.9 no.3
    • /
    • pp.91-101
    • /
    • 2008
  • This paper proposes component-based density propagation for tracking a component-based human body model that comprises components and their flexible links. We divide a human body into six body parts as components - head, body, left arm, right arm, left foot, and right foot - that are most necessary in tracking its movement. Instead of tracking a whole body's silhouette, using component-based density propagation, the proposed method individually tracks each component of various parts of human body through a human body model connecting the components. The proposed human body tracking system has been applied to track movements usee for young children's movement education: balancing, hopping, jumping, walking, turning, bending, and stretching. This proposed system demonstrated the validity and effectiveness of movement tracking by independently detecting each component in the human body model and by acquiring an average 97% of high tracking rate.

  • PDF

Human Detection in the Images of a Single Camera for a Corridor Navigation Robot (복도 주행 로봇을 위한 단일 카메라 영상에서의 사람 검출)

  • Kim, Jeongdae;Do, Yongtae
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.4
    • /
    • pp.238-246
    • /
    • 2013
  • In this paper, a robot vision technique is presented to detect obstacles, particularly approaching humans, in the images acquired by a mobile robot that autonomously navigates in a narrow building corridor. A single low-cost color camera is attached to the robot, and a trapezoidal area is set as a region of interest (ROI) in front of the robot in the camera image. The lower parts of a human such as feet and legs are first detected in the ROI from their appearances in real time as the distance between the robot and the human becomes smaller. Then, the human detection is confirmed by detecting his/her face within a small search region specified above the part detected in the trapezoidal ROI. To increase the credibility of detection, a final decision about human detection is made when a face is detected in two consecutive image frames. We tested the proposed method using images of various people in corridor scenes, and could get promising results. This method can be used for a vision-guided mobile robot to make a detour for avoiding collision with a human during its indoor navigation.

Detecting buried human remains using near-surface geophysical instruments

  • Powell Kathryn
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.88-92
    • /
    • 2004
  • To improve the recovery rate of unlocated buried human remains in forensic investigations, there is scope to evaluate and develop techniques that are applicable to the Australian environment. I established controlled gravesites (comprising shallow buried kangaroos, pigs, and human cadavers) in South Australia, to allow the methodical testing of remote sensing equipment for the purpose of grave detection in forensic investigations. Eight-month-old pig graves are shown to provide more distinct identifying results using ground-penetrating radar when compared to four-year-old kangaroo graves. Two further aspects of this research are presented: information (obtained from a survey) relating to the police use of geophysical instruments for locating buried human remains, and the use of electrical resistivity for locating human remains buried in a coffin. The survey of Australian police jurisdictions, covering the period 1995-2000, showed that police searches for unlocated bodies have not successfully located human remains using any geophysical instruments (such as ground-penetrating radar, magnetometers, or electrical resistivity). Lower resistivity readings were found coincident with the 150-year-old single historical burial in a heavily excavated field, in a situation where its exact location was previously unknown.