• 제목/요약/키워드: human colorectal carcinoma cells

검색결과 39건 처리시간 0.026초

HCT116 인체 대장암 세포주에서 상백피 추출물에 의한 전이 억제 효과 (Root Bark extract of Morus alba L. Suppressed the Migration and Invasion of HCT116 Human Colorectal Carcinoma Cells)

  • 박신형;박현지
    • 동의생리병리학회지
    • /
    • 제35권5호
    • /
    • pp.177-184
    • /
    • 2021
  • The root bark of Morus alba L. (MA) used in traditional oriental medicine for the treatment of pulmonary diseases exerts various pharmacological activities including anticancer effects. In the current study, we investigated the effects of MA on the migration and invasion of colorectal carcinoma cells. Results from a transwell assay showed that the methylene chloride extract of MA (MEMA) suppressed the migration and invasion of HCT116 human colorectal carcinoma cells in a concentration-dependent manner. MEMA reduced both mRNA and protein levels of matrix metalloproteinase (MMP)-9, but did not suppress the expression of MMP-2 in HCT116 cells. As a molecular mechanism, MEMA inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs), including ERK, JNK and p38, in a dose-dependent manner. In addition, MEMA dephosphorylated both Src and signal transducer and activator of transcription 3 (STAT3) in HCT116 cells. Taken together, we demonstrate that MEMA suppressed the migration and invasion capacity of HCT116 human colorectal cancer cells by downregulation of MMP-9 and inactivation of both MAPKs and Src/STAT3 signaling pathway.

Anti-HER-2×anti-CD3 Bi-specific Antibodies Inhibit Growth of HCT-116 Colorectal Carcinoma Cells in Vitro and in Vivo

  • Ren, Hui;Li, Jun;Liu, Jing-Jing;Guo, Hui-Ling;Jiang, Tao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권6호
    • /
    • pp.2795-2798
    • /
    • 2012
  • Objective: This study is conducted to evaluate the effects of anti-HER-2${\times}$anti-CD3 bi-specific antibodies(BsAb) on HER-2/neuover-expressing human colorectal carcinoma cells. Methods: Growth was assessed by MTT assays after exposure of HCT-116 cells to Herceptin, anti-CD3 and BsAb antibodies. Immunocytochemistry was applied to test the HER-2 level of HCT-116. In a nude mouse model, HER-2${\times}$CD3 BsAb was combined with effector cells (peripheral blood lymph cells from normal human being) for observations on in Vivo growth of tumors. Results: Compared with the control group, using effector cells combined with anti-CD3 McAb, Herceptin or HER2${\times}$CD3 BsAb, tumor cell growth in vitro and in vivo was significantly inhibited (P<0.05), most remarkably in the HER2${\times}$CD3 BsAb case. The growth of xenografts with HER2${\times}$CD3 BsAb combined with effector cells was also significantly inhibited when compared with the anti-CD3 McAb or Herceptin groups (P<0.05). Conclusion: HER-2/neu might be a useful target for immunotherapy in colorectal carcinoma, anti-HER2${\times}$anti-CD3 BsAb exerting clear anti-tumor effects.

MicroRNA-451 Inhibits Growth of Human Colorectal Carcinoma Cells via Downregulation of Pi3k/Akt Pathway

  • Li, Hong-Yan;Zhang, Yan;Cai, Jian-Hui;Bian, Hong-Lei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권6호
    • /
    • pp.3631-3634
    • /
    • 2013
  • MicroRNAs (MiRNAs) play important roles in coordinating a variety of cellular processes and abnormal expression has been linked to the occurrence of several cancers. The miRNA miR-451 is downregulated in colorectal carcinoma (CRC) cells, suggested by several research groups including our own. In this study, synthetic miR-451 mimics were transfected into the SW620 human CRC cell line using Lipofectamine 2000 and expression of miR-451 was analyzed by real time PCR, while expression of CAB39, LKB1, AMPK, AKT, PI3K and Bcl2 was analyzed by Western blot, and cell growth was detected by MTT assay. In comparison to the controls, a significant increase in the expression of miR-451 was associated with significantly decreased expression of CAB39, LKB1, AMPK, AKT, PI3K and Bcl2. The capacity of cell proliferation was significantly decreased by miR-451 expression, which also inhibited cell growth. Our study confirmed that miR-451 has a repressive role in CRC cells by inhibiting cell growth through down-regulating the P13K/AKT pathway.

Anti-proliferative Effect of a Novel Anti-oxidative Peptide in Hanwoo Beef on Human Colorectal Carcinoma Cells

  • Kim, Hye-Jin;Yang, Se-Ran;Jang, Aera
    • 한국축산식품학회지
    • /
    • 제38권6호
    • /
    • pp.1168-1178
    • /
    • 2018
  • The present study aimed to characterise anti-oxidant peptides from water-soluble protein extracts of Hanwoo beef and evaluate their anti-proliferative effect on human colorectal carcinoma cells (HCT116). Antioxidant peptides were purified from the low-molecular-weight fraction (<3 kDa) of Hanwoo beef extract. Antioxidant activity of peptide fractions was determined using the oxygen radical absorbance capacity (ORAC) assay. Purified peptide (P3) displayed higher ORAC activity than the low-molecular-weight fraction ($202.66{\mu}M\;TE/g$ vs $167.38{\mu}M\;TE/g$ of dry matter, respectively) (p<0.05). The peptide sequence of P3 was Cys-Cys-Cys-Cys-Ser-Val-Gln-Lys (888.30 Da). The novel peptide P3, at $250{\mu}g/mL$, also significantly inhibited HCT116 cell proliferation up to 25.24% through phosphorylation of ERK, JNK, and p38 kinase (p<0.05). Hence, antioxidant peptide P3 from Hanwoo beef extract can be used as an antioxidative and anticancer agent in the functional food industry.

ZNF217 is Overexpressed and Enhances Cell Migration and Invasion in Colorectal Carcinoma

  • Zhang, Zi-Chao;Zheng, Li-Qiang;Pan, Li-Jie;Guo, Jin-Xing;Yang, Guo-Shan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권6호
    • /
    • pp.2459-2463
    • /
    • 2015
  • Background: To investigate the expression and clinical significance of zinc finger protein 217 (ZNF217) in human colorectal carcinoma (CRC). Materials and Methods: The expression of ZNF217 in 60 CRC tissues and matched tumor adjacent tissues, collected between January 2013 and June 2014, was assessed immunohistochemically. The relationship between the expression of ZNF217 and clinicopathlogical features was analyzed by Pearson chi-square test. In addition, siRNA was used to down-regulate the expression of ZNF217 in CRC cells. The effects of ZNF217 for cell migration and invasion were measured by wound healing assay and transwell assay, respectively. Results: The expression level of ZNF217 was significantly higher in CRC tissues than in tumor adjacent tissues (p<0.05), positively correlating with tumor size, lymphatic metastasis and advanced TNM stage (p<0.05). Down-regulation of ZNF217 in CRC cells could significantly suppress cell migration and invasion. Conclusions: ZNF217 is overexpressed in colorectal carcinoma tissues and is associated with tumor malignant clinicopathological features. ZNF217 may promote CRC progression by inducing cell migration and invasion.

Fentanyl Increases Colorectal Carcinoma Cell Apoptosis by Inhibition of NF-κB in a Sirt1-dependent Manner

  • Zhang, Xiu-Lai;Chen, Min-Li;Zhou, Sheng-Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권22호
    • /
    • pp.10015-10020
    • /
    • 2014
  • Background: Fentanyl is used as an analgesic to treat pain in a variety of patients with cancer and recently it has become considered to also act as an antitumor agent. The study present was designed to investigate the effects of fentanyl on colorectal cancer cell growth and plausible mechanisms. Materials and Methods: The human colorectal carcinoma cell line HCT116 was subcutaneously injected into nude mice. The viability of HCT116 was tested by MTT assay, and apoptosis by flow cytometry and caspase-3 activity. The expression of Sirt1 and NF-${\kappa}B$ were evaluated by Western blotting and the levels of Sirt1 and NF-${\kappa}B$ by fluorescence method. SiRNA was used to silence and Ad-Sirt1 to overexpress Sirt1. Results: Our data showed that fentanyl could inhibit tumor growth, with increased expression of Sirt1 and down-regulation of Ac-p65 in tumors. Compared with control cells without treatment, HCT116 cells that were incubated with fentanyl had a higher apoptotic rate. Moreover, fentanyl could increase expression and activity of Sirt1 and inhibitor expression and activity of NF-${\kappa}B$, which might be mechanisms of fentanyl action. Conclusions: Fentanyl increased colorectal carcinoma cell apoptosis by inhibition of NF-${\kappa}B$ activation in a Sirt1-dependent manner.

The C-terminal domain of PLD2 participates in degradation of protein kinase CKII β subunit in human colorectal carcinoma cells

  • Lee, Young-Hoon;Uhm, Jong-Su;Yoon, Soo-Hyun;Kang, Ji-Young;Kim, Eun-Kyung;Kang, Beom-Sik;Min, Do-Sik;Bae, Young-Seuk
    • BMB Reports
    • /
    • 제44권9호
    • /
    • pp.572-577
    • /
    • 2011
  • Elevated phospholipase D (PLD) expression prevents cell cycle arrest and apoptosis. However, the roles of PLD isoforms in cell proliferation and apoptosis are incompletely understood. Here, we investigated the physiological significance of the interaction between PLD2 and protein kinase CKII (CKII) in HCT116 human colorectal carcinoma cells. PLD2 interacted with the CKII${\beta}$ subunit in HCT116 cells. The C-terminal domain (residues 578-933) of PLD2 and the N-terminal domain of CKII${\beta}$ were necessary for interaction between the two proteins. PLD2 relocalized CKII${\beta}$ to the plasma membrane area. Overexpression of PLD2 reduced CKII${\beta}$ protein level, whereas knockdown of PLD2 led to an increase in CKII${\beta}$ expression. PLD2-induced CKII${\beta}$ reduction was mediated by ubiquitin-dependent degradation. The C-terminal domain of PLD2 was sufficient for CKII${\beta}$ degradation as the catalytic activity of PLD2 was not required. Taken together, the results indicate that the C-terminal domain of PLD2 can regulate CKII by accelerating CKII${\beta}$ degradation in HCT116 cells.

MiR-1297 Regulates the Growth, Migration and Invasion of Colorectal Cancer Cells by Targeting Cyclo-oxygenase-2

  • Chen, Pu;Wang, Bei-Li;Pan, Bai-Shen;Guo, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권21호
    • /
    • pp.9185-9190
    • /
    • 2014
  • Cyclo-oxygenase-2(Cox-2), a key regulator of inflammation-producing prostaglandins, promotes cell proliferation and growth. Therefore, a better understanding of the regulatory mechanisms of Cox-2 could lead to novel targeted cancer therapies. MicroRNAs are strongly implicated in colorectal cancer but their specific roles and functions have yet to be fully elucidated. MiR-1297 plays an important role in lung adenocarcinoma and laryngeal squamous cell carcinoma, but its significance in colorectal cancer (CRC) has yet to be reported. In our present study, we found miR-1297 to be down regulated in both CRC-derived cell lines and clinical CRC samples, when compared with normal tissues. Furthermore, miR-1297 could inhibit human colorectal cancer LOVO and HCT116 cell proliferation, migration, and invasion in vitro and tumorigenesis in vivo by targeting Cox-2. Moreover, miR-1297 directly binds to the 3'-UTR of Cox-2, and the expression level was drastically decreased in LOVO and HCT116 cells following overexpression of miR-1297. Additionally, Cox-2 expression levels are inversely correlated with miR-1297 expression in human colorectal cancer xenograft tissues. These results imply that miR-1297 has the potential to provide a new approach to colorectal cancer therapy by directly inhibiting Cox-2 expression.

Anti-metastatic mechanism of mountain cultivated wild ginseng in human cancer cell line

  • Jang, S.B.;Lim, C.S.;Jang, J.H.;Kwon, K.R.
    • 대한약침학회지
    • /
    • 제13권1호
    • /
    • pp.37-43
    • /
    • 2010
  • Objective : Ginseng is one of most widely used herbal medicine. Ginseng showed anti-metastasis activities. However, its molecular mechanisms of action are unknown. So we want to report the wild ginseng repress which plays key roles in neoplastic epithelial-mesenchymal transition process. Methods : Treatment of the human colorectal carcinoma LOVO cells and human gastric carcinoma SNU601 cells with the increased concentrations of cultivated wild ginseng extracts resulted in a gradual decrease in the AXIN2 gene expression. Results : Metastasis-suppressor genes, maspin and nm23 was not affected by the treatment of ginseng extracts in LOVO cells. Moreover, the mountain cultivated wild ginseng or mountain wild ginseng are similar in their inhibitory effects on the expression of AXIN2 gene, but are substantially stronger than cultivated ginseng. Conclusion : We described the novel mechanism of wild ginseng-induced anti-metastasis activity by repressing the expression of AXIN2 gene that plays key roles in epithelial-mesenchymal transition process.

Licochalcone C Inhibits the Growth of Human Colorectal Cancer HCT116 Cells Resistant to Oxaliplatin

  • Seung-On Lee;Sang Hoon Joo;Jin-Young Lee;Ah-Won Kwak;Ki-Taek Kim;Seung-Sik Cho;Goo Yoon;Yung Hyun Choi;Jin Woo Park;Jung-Hyun Shim
    • Biomolecules & Therapeutics
    • /
    • 제32권1호
    • /
    • pp.104-114
    • /
    • 2024
  • Licochalcone C (LCC; PubChem CID:9840805), a chalcone compound originating from the root of Glycyrrhiza inflata, has shown anticancer activity against skin cancer, esophageal squamous cell carcinoma, and oral squamous cell carcinoma. However, the therapeutic potential of LCC in treating colorectal cancer (CRC) and its underlying molecular mechanisms remain unclear. Chemotherapy for CRC is challenging because of the development of drug resistance. In this study, we examined the antiproliferative activity of LCC in human colorectal carcinoma HCT116 cells, oxaliplatin (Ox) sensitive and Ox-resistant HCT116 cells (HCT116-OxR). LCC significantly and selectively inhibited the growth of HCT116 and HCT116-OxR cells. An in vitro kinase assay showed that LCC inhibited the kinase activities of EGFR and AKT. Molecular docking simulations using AutoDock Vina indicated that LCC could be in ATP-binding pockets. Decreased phosphorylation of EGFR and AKT was observed in the LCC-treated cells. In addition, LCC induced cell cycle arrest by modulating the expression of cell cycle regulators p21, p27, cyclin B1, and cdc2. LCC treatment induced ROS generation in CRC cells, and the ROS induction was accompanied by the phosphorylation of JNK and p38 kinases. Moreover, LCC dysregulated mitochondrial membrane potential (MMP), and the disruption of MMP resulted in the release of cytochrome c into the cytoplasm and activation of caspases to execute apoptosis. Overall, LCC showed anticancer activity against both Ox-sensitive and Ox-resistant CRC cells by targeting EGFR and AKT, inducing ROS generation and disrupting MMP. Thus, LCC may be potential therapeutic agents for the treatment of Ox-resistant CRC cells.