• Title/Summary/Keyword: human breast carcinoma

Search Result 185, Processing Time 0.024 seconds

Treatment of Pseudoangiomatous Stromal Hyperplasia of the Breast: Implant-Based Reconstruction with a Vascularized Dermal Sling

  • Jung, Bok Ki;Nahm, Ji Hae;Lew, Dae Hyun;Lee, Dong Won
    • Archives of Plastic Surgery
    • /
    • v.42 no.5
    • /
    • pp.630-634
    • /
    • 2015
  • Pseudoangiomatous stromal hyperplasia (PASH) of the breast is a benign mesenchymal lesion with incidental histologic findings. Surgical excision is recommended as the treatment of choice for PASH, although the recurrence rates after excision range from 15% to 22%. A 46-year-old-female presented with a six-month history of bilateral breast enlargement and painful sensation mimicking inflammatory carcinoma. Imaging studies demonstrated innumerable enhancing nodules in both breasts. Due to the growth of the lesions and progressive clinical symptoms, bilateral subcutaneous mastectomy was performed. Grossly, the specimens were round and well-circumscribed, and the histologic examination revealed PASH. After mastectomy, we created a pocket with the pectoralis major muscle and a lower skin flap, which was deepithelized. Anatomical mammary implants were inserted, and the nipple areolar complex was transferred to a new position as a free graft. The aesthetic result was satisfactory after twelve months of follow-up.

Genetic Suppressor Elements that Halt the Proliferation of Breast Carcinoma Cells

  • Primiano, Thomas
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.98-114
    • /
    • 2002
  • The completion of the draft sequence of the human genome has provided us with a partial list of known and putative human genes, the total number of which is estimated between 30, 000 and 45, 000 (1, 2). These genes provide many potential targets for drugs, some of which may be useful in stopping the growth of cancers. The development of gene-targeting anticancer drugs could be greatly facilitated by the ability to narrow down the list of human genes to those that are necessary for the growth of tumor cells. (omitted)

  • PDF

Exploitation of the biologically active substances in germinating Mung bean and Buckwheat seeds

  • Back, Jong-Oh;Lee, Sook-Young;Hwang, Eun-Joo;Boo, Hee-Ock;Pyo, Byoung-Sik
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2003.04a
    • /
    • pp.103-103
    • /
    • 2003
  • This study was carried out to investigate of the biologically active components in germinating Mung bean(Phaseolus radiata L.) and Buckwheat (Fagopyrum esculentum Moench) seeds. During the initial germination, germination ratio of 24 hours pre-soaking Mung bean and Buckwheat seeds were higher about 2∼3% than that of non-soaking. This experiment also was peformed to observe cytotoxic effect of the germinating seeds(germination length : 2, 5, 10mm) extracts against cancer cell lines including human lung carcinoma(Calu-6), human breast adenocarcinoma(MCT-7), human great intestine carcinoma(Caco-2) and human leukemia carcinoma(AML-2/WT). The growth of the cancer cells in medium containing Mung bean and Buckwheat extracts were significantly inhibited degree in proportion to the length of germination seeds, Especially, the results show that a significant shrinkage of Calu-6 cells was observed when the cells were exposed into extract of 10mm germination seeds in germinating Mung bean and Buckwheat seeds.

  • PDF

Relationship between ganglioside expression and anti-cancer effects of a plant-derived antibody in breast cancer cells

  • Ju, Won Seok;Song, Ilchan;Park, Se-Ra;Seo, Sang Young;Cho, Jin Hyoung;Min, Sung-Hun;Kim, Dae-Heon;Kim, Ji-Su;Kim, Sun-Uk;Park, Soon Ju;Ko, Kisung;Choo, Young-Kug
    • Journal of Plant Biotechnology
    • /
    • v.46 no.3
    • /
    • pp.217-227
    • /
    • 2019
  • Production of therapeutic monoclonal antibodies (mAbs) using a plant platform has been considered an alternative to the mammalian cell-based production system. A plant-derived mAb CO17-1AK ($mAb^P$ COK) can specifically bind to various types of cancer cell lines. The target protein of $mAb^P$ COK is the epithelial cell adhesion molecule (EpCAM) highly expressed in human epithelial cancer cells, including breast and colorectal cancer cells. It has been hypothesized that its overexpression supports tumor growth and metastasis. A ganglioside is extended well beyond the surfaces of the various cell membranes and has roles in cell growth, inflammation, differentiation, and carcinogenesis. However, the regulation of EpCAM gene expression in breast cancers and the role of gangliosides in oncogenesis are unclear. Here, the purpose of this study was to determine the effects of $mAb^P$ COK on human breast cancer cell proliferation, apoptosis, and ganglioside expression patterns. Our results show that treatment with $mAb^P$ COK suppressed the growth of breast cancer cells and induced apoptotic cell death. It also upregulated the expression of metastasis-related gangliosides in breast cancer cells. Thus, treatment with $mAb^P$ COK may have chemo-preventive therapeutic effects against human breast cancer.

Antimutagenic and Cytotoxicity Effects of Fermented Soybean Extract (발효콩 추출물의 항돌연변이원성 및 세포독성 효과)

  • 함승시;최승필;이효진;문선영;김수현;이득식
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.14 no.3
    • /
    • pp.288-293
    • /
    • 2004
  • This study was carried out to determine the antimutagenic and anticancer effects of fermented soybean using Ames test and cytotoxicity, respectively. The ethyl acetate fraction (200 g/plate) of fermented soybean in the Salmonella typhimurium TA100 strain showed 86.6% of inhibition rate against the mutagenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine(MNNG). In addition, the suppression of ethyl acetate fraction with same concentration of fermented soybean in the Salmonella typhimurium TA98 and TAI00 strains showed 82.4% and 90.8% inhibition against 3-amino-l,4-dimethyl-5H-pyrido-(4,3-b)indol (Trp-P-l), respectively. The cytotoxicity effects of fermented soybean against the cell lines with human lung carcinoma (A549), human gastric carcinoma (AGS) and human breast adenocarcinoma (MCF-7) were inhibited with the increase of the extract concentration. The treatment of 1.0 mg/mL ethyl acetate fraction of fermented soybean showed strong cytotoxicities of 71.6%, 91.5% and 80.7% against A549, AGS and MCF-7, respectively.

  • PDF

Induction of p53-Dependent G1 Cell Cycle Arrest by Rhus verniciflua. Stokes Extract in Human Breast Carcinoma MCF-7 Cells (MCF-7 인체 유방암 세포에서 옻나무 추출물이 p53-Dependent G1 Cell Cycle에 미치는 영향)

  • Hong, Sang-hoon;Han, Min-ho;Choi, Yung-hyun;Park, Sang-eun
    • The Journal of Internal Korean Medicine
    • /
    • v.36 no.1
    • /
    • pp.13-21
    • /
    • 2015
  • Objectives : In Korea, Rhus verniciflua Stokes (RVS) has been used in traditional medicine for various diseases such as back pain, syndromes of the blood system in women, gastrointestinal disease, and cancer. However, the molecular mechanisms of its anti-cancer activity have not been clearly elucidated yet. Methods : This study investigated the possible mechanisms by which RVS extract (RVE) exerts its anti-proliferative action in cultured human breast carcinoma MCF-7 cells. Results : Treatment with RVE in MCF-7 cells resulted in inhibition of cell viability through G1 arrest of the cell cycle and induction of apoptosis in a time- and concentration-dependent manner, as determined by MTT assay and flow cytometry analysis. The induction of G1 arrest by RVE treatment was associated with the inhibition of cyclin D1, cyclin-dependent kinase (Cdk) 2, retinoblastoma protein (pRB), and mouse double minute 2 (MDM2) expression. Moreover, RVE treatment concentration dependently increased the levels of tumor suppressor p53, which was associated with the marked induction of Cdk inhibitors such as p21 (Waf1/Cip1) and p27 (Kip1). However, the inhibition of p53 function by the wild-type p53-specific inhibitor, pifithrin-α, abolished the above-mentioned effects of RVE, showing that p53 was responsible for the cytotoxicity of RVE Conclusions : These data indicate that a molecular pathway involving p53-dependent G1 cell cycle arrest plays a pivotal role in the cellular response to RVE, and demonstrate the potential applications of RVE as an anti-cancer drug for breast cancer treatment.

The Human PTK6 Interacts with a 23-kDa Tyrosine-Phosphorylated Protein and is localized in Cytoplasm in Breast Carcinoma T-47D Cells

  • Bae, Joon-Seol;Lee, Seung-Thek
    • BMB Reports
    • /
    • v.34 no.1
    • /
    • pp.33-38
    • /
    • 2001
  • The human PTK6 (also known as Brk) polypeptide, which is deduced from its full-length cDNA, represents a non-receptor protein tyrosine kinase (PTK). It contains SH3, SH2, and tyrosine kinase catalytic domains that are closely related to Src family members. We generated an antihuman PTK6 antibody by immunizing rabbits with a PTK6-specific oligopeptide conjugated to BSA, which corresponds to 11 amino acid residues near the C-terminus. An immunoblot analysis with the antibody detected an expected 52-kDa band in various mammalian transformed cell lines. Immunoprecipitation and immunoblot analyses demonstrated that PTK6 is phosphorylated on the tyrosine residues) and interacts with approximately a 23-kDa tyrosine-phosphorylated polypeptide (most likely a substrate of PTK6) in breast carcinoma T-47D cells. An immunofluorescence analysis demonstrated that PTK6 is localized throughout the cytoplasm of T-47D cells. These results support a possible role for PTK6 in the intracellular signal transduction through tyrosine phosphorylation.

  • PDF

Requirement of Reactive Oxygen Species Generation in Apoptosis of MCF-7 Human Breast Carcinoma Cells Induced by Sanguinarine

  • Lim, Ji-Young;Lee, Yae-Lim;Lee, Hae-Rin;Choi, Woo-Young;Lee, Won-Ho;Choi, Yung-Hyun
    • Toxicological Research
    • /
    • v.23 no.3
    • /
    • pp.215-221
    • /
    • 2007
  • Although sanguinarine, a benzophenanthridine alkaloid, possesses anti-cancer properties against several cancer cell lines, the molecular mechanisms by which it inhibits cell growth and induces apoptosis have not been clearly understood. In order to further explore the critical events leading to apoptosis in sanguinarine-treated MCF-7 human breast carcinoma cells, the following effects of sanguinarine on components of the mitochondrial apoptotic pathway were examined: generation of reactive oxygen species (ROS), alteration of the mitochondrial membrane potential (MMP), and the expression changes of Bcl-2 family proteins. We show that sanguinarine-induced apoptosis is accompanied by the generation of intracellular ROS and disruption of MMP as well as an increase in pro-apoptotic Bax expression and a decrease of anti-apoptotic Bcl-2 and Bcl-xL expression. The quenching of ROS generation with N-acetyl-L-cysteine, the ROS scavenger, protected the sanguinarine-elicited ROS generation, mitochondrial dysfunction, modulation of Bcl-2 family proteins, and apoptosis. Based on these results, we propose that the cellular ROS generation plays a pivotal role in the initiation of sanguinarine-triggered apoptotic death.

Anti-proliferative Activities of Metallic Nanoparticles in an in Vitro Breast Cancer Model

  • Loutfy, Samah A;Al-Ansary, Nadia A;Abdel-Ghani, Nour T;Hamed, Ahmed R;Mohamed, Mona B;Craik, James D;Eldin, Taher A. Salah;Abdellah, Ahmed M;Hussein, Yassmein;Hasanin, MTM;Elbehairi, Serag Eldin I
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.6039-6046
    • /
    • 2015
  • Aims: To investigate effect of metallic nanoparticles, silver (AgNPs) and gold nanoparticles (AuNPs) as antitumor treatment in vitro against human breast cancer cells (MCF-7) and their associated mechanisms. This could provide new class of engineered nanoparticles with desired physicochemical properties and may present newer approaches for therapeutic modalities to breast cancer in women. Materials and Methods: A human breast cancer cell line (MCF-7) was used as a model of cells. Metallic nanoparticles were characterized using UV-visible spectra and transmission electron microscopy (TEM). Cytotoxic effects of metallic nanoparticles on MCF-7 cells were followed by colorimetric SRB cell viability assays, microscopy, and cellular uptake. Nature of cell death was further investigated by DNA analysis and flow cytometry. Results: Treatment of MCF-7 with different concentrations of 5-10nm diameter of AgNPs inhibited cell viability in a dose-dependent manner, with IC50 value of $6.28{\mu}M$, whereas treatment of MCF-7 with different concentrations of 13-15nm diameter of AuNPs inhibited cell viability in a dose-dependent manner, with IC50 value of $14.48{\mu}M$. Treatment of cells with a IC50 concentration of AgNPs generated progressive accumulation of cells in the S phase of the cell cycle and prevented entry into the M phase. The treatment of cells with IC50 concentrations of AuNPs similarly generated progressive accumulation of cells in sub-G1 and S phase, and inhibited the entrance of cells into the M phase of the cell cycle. DNA fragmentation, as demonstrated by electrophoresis, indicated induction of apoptosis. Conclusions: Our engineered silver nanoparticles effectively inhibit the proliferation of human breast carcinoma cell line MCF-7 in vitro at high concentration ($1000{\mu}M$) through apoptotic mechanisms, and may be a beneficial agent against human carcinoma but further detailed study is still needed.