• Title/Summary/Keyword: human breast cancer

Search Result 973, Processing Time 0.019 seconds

Inhibitory Effects of Asparagus cochinchinensis in LPS-Stimulated BV-2 Microglial Cells through Regulation of Neuroinflammatory Mediators, the MAP Kinase Pathway, and the Cell Cycle (Lipopolysaccharide로 자극된 BV-2 미세교세포에서 신경염증 매개체, MAP kinase경로, 세포주기의 조절에 의한 천문동(Asparagus cochinchinensis)의 저해효과)

  • Lee, Hyun Ah;Kim, Ji Eun;Choi, Jun Young;Sung, Ji Eun;Youn, Woo Bin;Son, Hong Joo;Lee, Hee Seob;Kang, Hyun-Gu;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.30 no.4
    • /
    • pp.331-342
    • /
    • 2020
  • The suppression of neuroinflammatory responses in microglial cells can be considered a key target for improving the progression of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Asparagus cochinchinensis has traditionally been used as a medicine to treat fever, cough, kidney disease, breast cancer, inflammatory diseases, and brain diseases. In this study, we investigated the neuroprotective mechanism of an aqueous extract from A. cochinchinensis root (AEAC), particularly its anti-inflammatory effects on lipopolysaccharide (LPS)-activated BV-2 microglial cells. BV-2 cells were treated with four different concentrations of AEAC. No significant toxicity was detected in BV-2 cells treated with AEAC. Nitric oxide (NO), cyclooxygenase-2 (COX-2) mRNA, and inducible nitric oxide synthase (iNOS) mRNA levels were 21% lower in the AEAC+LPS group than in the Vehicle+LPS group. Lower proinflammatory (TNF-α and IL-1β) and anti-inflammatory cytokine (IL-6 and IL-10) levels were also detected in the AEAC+LPS group than in the Vehicle+LPS group, albeit at varying rates. Moreover, the phosphorylation of mitogen-activated protein kinase (MAPK) members after LPS treatment was significantly recovered in the AEAC-pretreated group compared to the Vehicle+LPS group, enhancement of the phosphorylation of mitogen-activated protein kinase (MAPK) members after LPS treatment was significantly recovered in the AEAC-pretreated group, while cell cycle arrest at the G2/M phase caused by LPS treatment was less severe in the AEAC+LPS group. The increase in reactive oxygen species (ROS) generation induced by LPS treatment was also lower in the AEAC-pretreated group than in the Vehicle+LPS group. This is the first study to show that AEAC exerts anti-neuroinflammatory activity against LPS stimulation by regulating the MAPK signaling pathway, the cell cycle, and ROS production.

The Effects of Medicinal Herbs Extracts on Estrogen-like Activities and Osteoblast Proliferation and Differentiation (한약재 추출물의 에스트로겐 유사활성 및 조골세포 증식과 분화에 미치는 영향)

  • Kim, Mihyang;Kim, Bokyung;Kim, Jae-Deog;Kang, A-Ram;Lee, Chang-Eun;Seo, Jungmin;Lee, Dong-Geun;Jo, Jung-Kwon;Kim, Yuck Yong;Yu, Ki Hwan;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.27 no.4
    • /
    • pp.456-463
    • /
    • 2017
  • The purpose of this study was to investigate the effect of 3 types of medicinal herbs (Glycyrrhizae radix, Astragali radix and Dioscorea rhizoma) extracts on estrogen-like activities, proliferation and differentiation in osteoblast. Human breast cancer cell line MCF7 was transfected using an estrogen responsive luciferase reporter plasmid for measure the estrogen-like activity. Estrogen-like activities of extracts were in the range of 1.11~5.73 fold to that of negative control. The extract of G. radix showed the strongest estrogen-like activities. The estrogen-like activities of 50 and $500{\mu}g/ml$ extracts of G. radix were similar to that of $10^{-8}$ and $10^{-7}$ M standard solution ($17{\beta}-estradiol$), respectively. G. radix extract showed no cytotoxicity against osteoblast MC3T3-E1 cells at $1{\sim}1,000{\mu}g/ml$. The extract of A. radix showed no significant proliferation of osteoblast. However, the extract of G. radix and D. rhizome showed maximum 148% and 133% proliferation effects. The extract of G. radix also increased alkaline phosphatase activity and the maximum was 122% at $100{\mu}g/ml$ compared to that of control. The nodule formation by the method of the Alizarin red S staining increased compared to control. These results suggest that G. radix is able to perform the bone formation and prevent osteoporosis.

Antioxidant Activities and Induction of Apoptosis by Methanol Extracts from Avocado (아보카도 추출물의 Apoptosis 유도와 항산화 활성)

  • Lee, Sung-Gyu;Yu, Mi-Hee;Lee, Sam-Pin;Lee, In-Seon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.3
    • /
    • pp.269-275
    • /
    • 2008
  • The avocado is a widely grown and consumed fruit that is high in nutrients and low in calories, sodium, and fats. In this study, antioxidant activities and induction of apoptosis by methanol extracts from sarcocarp, seed and peel of avocado were investigated in vitro. Contents of total polyphenols in methanol extracts from sarcocarp, seed and peel were 13.89, 137.12 and $223.45{\mu}g/mg$ respectively. Radical-scavenging activities of the methanol extracts were examined by using ${\alpha},{\alpha}$-diphenyl-${\beta}$-picrylhydrazyl (DPPH) radicals and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) assay. The methanol extracts from the peel of avocado showed higher scavenging activities against DPPH, ABTS than those from sarcocarp and seed. Apoptosis in MDA-MB-231 cells mediated by the methanol extracts of avocado was associated with the increase of activation of caspase-3 and caspase-3 target protein, PARP. Therefore, with more researches on identification and action mechanism of active compounds, the methanol extracts from peel and seed of avocado is expected to be a natural source for the developments of functional food and medical agents to prevent human breast cancer.