• Title/Summary/Keyword: hot-work steel

Search Result 90, Processing Time 0.024 seconds

Characterization of Surface Roughness and Inhomogeneity of Hot-Rolled Carbon Steels by Using Image Analysis Method and Electrochemical Impedance Spectroscopy

  • Pyun, Su-Il;Na, Kyung-Hwan;Go, Joo-Young;Park, Jin-Ju
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.3
    • /
    • pp.217-223
    • /
    • 2003
  • The present work is concerned with characterization of surface roughness and inhomogeneity of four kinds of hot-rolled carbon steels in terms of the fractal dimension and the depression parameter by using image analysis method and electrochemical impedance spectroscopy, respectively. From the analysis of the 3D AFM image, it is realized that all the hot-rolled steel surfaces show the self-affine fractal property. The values of the fractal dimension of the hot-rolled steels were determined by the analyses of the AFM images on the basis of both the perimeter-area method and the triangulation method. In addition, the Nyquist plots were found to be depressed from a perfect semicircle form. From the experimental findings, the changes in the values of the fractal dimension and the depression parameter with chemical composition have been discussed in terms of the change in the value of hardness of base steel.

Computation of High Temperature Friction Coefficient of SCM435 Steel (SCM435 강의 고온마찰계수 계산)

  • Sung, J.U.;Cho, S.H.;Lee, H.J.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.20 no.3
    • /
    • pp.243-249
    • /
    • 2011
  • In this study, an approach designed to compute high temperature friction coefficients for SCM 435 steel through a pilot hot rolling test and a finite element analysis, is proposed. Single pass pilot hot flat rolling tests with reduction ratios varying from 20 to 40% were carried out at temperatures ranging from 900 to $1200^{\circ}C$. In the proposed approach, the friction coefficient is calculated by comparing the measured strip spread and the roll force with the simulation results. This study showed that the temperature and reduction ratio had a significant influence on the friction coefficient. As both material temperature and reduction ratio become higher, the friction coefficient increases monotonically. This finding is not in agreement with the Ekelund model, which is widely used in the analysis of the hot rolling process. In the present work, the friction coefficient at a reduction ratio of 40% was found to be 1.2 times greater than that at a reduction of 30%. This higher friction coefficient means that an increment of the roll thrust force is expected at the next stand. Therefore, a roll pass designer must understand this phenomenon in order to adjust the reduction ratio at the stands while keeping the driving power, the roll housing structure and the work roll strength within the allowable range.

Improvement of Coating Adherence of Hot-dip Galvanized Sheet Steels (용융아연 도금강판의 도금밀착성 개선)

  • 김종상;배대철
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.1
    • /
    • pp.18-24
    • /
    • 1991
  • In the present work the adhesion failure of a hot-dip galvanized coating has been studied as a function gas composition temperature of strip and of atmospheric gas in furnace. The adhesion failure of the hot-dip galvani-zed coating is classified as three mechanisms : carbon deposition, oxide film formation and alloy layer formation. The adhesion failure due to oxide film formation decreased markedly by increasing the gases temperature of direct fired furnace(DFF) in order to improve the reducing ability of steel strip. Optimum conditions of operating and manufacturing facilities for improving the coating adherence are suggested by analyzing the interface between steel substrate and coating layer.

  • PDF

Microstructural Control of High Speed Steel Roll Material with Titanium and Niobium (Ti과 Nb에 의한 HSS 작업롤재의 미세조직 제어)

  • 김진수;김동규;최진원;이희춘
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.262-271
    • /
    • 1999
  • This work was intended to modify the solidification structure of high speed steel roll material for hot strip mill, by the introduction of alloying elements designed to form primary carbide dispersions via melt treatment procedure. Solidification structure was modified by the melt treatment with titanium and distribution. This modifying effect could be attributed to the fact that the nuclie formed at high temperature upon inoculation induce the formation of fine equiaxed grain and primary carbide during solification, which is also likely to be responsible for the fact that TiC acts as effective nuclie for primary VC solidification.

  • PDF

Fatigue Characteristics of Work roll of Roughing Stand in Hot Strip Mill (열연 조압연 Work Roll의 피로 특성)

  • 이원호;김상준;이영호;장준상;이준정;김종근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.819-827
    • /
    • 1992
  • Investigations of the fatigue damage of roughing mill roll and experimentally. By the computer simulation for analysing the stresses on the roll surface and experimental hot rolling, the following results were drawn : The crakcs observed on the roll surface were initiated thermally in the initial stage of the rolling and propagated by repeated thermal and bending stresses. The size of the roll surface cracks smaller than 4.87mm could avoid the occurrence of tiny scab, surface defect of hot steel strip. Since the size of surface cracks observed on the roughing mill roll was very small, the fatigue damage of roll surface was found not to be the major factor for the formation of the scab.

The Effects of Alloying Elements on the Formation of Interfacial Reaction Layer between Molten Aluminium Alloys and STD61 Tool Steel (알루미늄 합금 용탕/STD61 공구강의 계면 반응층 형성에 미치는 합금원소의 영향)

  • Park, Heung-Il;Park, Ho-Il
    • Journal of Korea Foundry Society
    • /
    • v.25 no.4
    • /
    • pp.161-167
    • /
    • 2005
  • The experiment of hot dip interaction tests was carried out in order to study the formation behavior of interfacial reaction layer between as-received STD61 hot work tool steel and a commercial pure aluminum melt, Al-xwt.%Fe(x=0.2, 0.5, 0.8 and 1.1) alloys melt and Al-xwt.%Si(x=1.0, 4.0, 7.0 and 10.0) alloys melt, respectively. The results show that the reaction layer, over 300 ${\mu}m$ in thickness, is easily formed by the dissolution of silicon from as-received tool steel. When the iron content in the aluminum alloy is higher than 1.1 wt.%, the thickness of reaction layer decreases below 180 ${\mu}m$ by preventing iron dissolution from the tool steel. The silicon dissolved from tool steel acts as a strong promoter on the formation of reaction layer, but the alloyed silicon in molten aluminum alloys acts as an inhibitor on the formation of reaction layer.

Hot and Cold Rolling Characteristic with High-Nitrogen Steel of Austenitic Stainless (HNS) (오스테나이트계 고질소 스테인레스 강의 열간 및 냉간 압연특성)

  • Lee, J.W.;Kim, D.S.;Kim, B.K.;Kim, D.K.;Kim, Y.D.;Cha, D.J.;Lee, M.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.99-101
    • /
    • 2008
  • At 21st century, material development concepts were changed to fulfill the environmental friendly demands. This study is to study the effect of pressurized nitrogen gas and manganese in high nitrogen austenitic stainless steel(HNS) in which N and Mn elements substitute the nickel element. 100kg HNS ingots were made by Pressurized Vacuum Induction Melting(P-VIM) and were forged according to free forging process. As forged HNS were hot and cold rolled by pilot scale rolling machine. Depending on the rolling condition, the mechanical properties of HNS were changed. The roll thrust and sheet folding showed asymmetry condition between work and drive side during cold and hot rolling. The purpose of this study are to improve workability the hot and cold rolling machine and to set the conditions for establishing the rolling process.

  • PDF

A Study on Evaluation of Plastic Strain at Notch Tip of Weld HAZ in Steel (강 용접 열영향부 놋치 선단 의 소성 스트레인 평가에 관한 연구)

  • 김태영;임재규;정세희
    • Journal of Welding and Joining
    • /
    • v.2 no.1
    • /
    • pp.41-48
    • /
    • 1984
  • Recrystallization technique was applied to analyze plastic strain at the notch tip of coarse grain HAZ in mild steel (SB 41) and high strength steel (SA 588). The notch tip of specimen was deformed by three point bending. Accumulated displacement (Crack Opening Displacement ${delta}t$) by the monotonic and cyclic loading under room temperature and hot strain embrittlement temperature ($250^{\circ}C$) was 0~1.0mm. Recrystallization heat treatment conditions were $650^{circ}C{ imes}3hr$ for SB 41 and $700^{circ}C{ imes}3hr$ for SA 588. The experimental results obtained were as follows ; 1) Distribution of the effective plastic strain at plastic zone was appeared by the function of crack opening displacement, and plastic zone or the effective plastic strain increased with crack opening displacement. 2) Plastic strain at notch tip of HAZ due to accumulated hot strain calculated as follows. .epsilon. over bar $_{p}$ = .epsilon. over bar $_{cr}$ (x/ $R_{x}$ ) $^{m}$ (m=0.25) 3) Work hardending ratio of notch tip for hot strain was linearly increased with .epsilon. over bar $_{max}$ and dependent upon the material types.s.

  • PDF

The fire-risks of cost-optimized steel structures: Fire-resistant and hot-rolled carbon steel

  • Garcia, Harkaitz;Cuadrado, Jesus;Biezma, Maria V.;Calderon, Inigo
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.67-75
    • /
    • 2021
  • This work studies the behaviour of a steel portal frame selection under fire exposure, considering both span lengths and fire exposure times as variables. Such structures combine carbon steel (S275), fireproof micro-alloyed steel (FR), and coatings of intumescent paint with variable thicknesses, improving thereby the flame retardant behaviour of the steel structure. Thus, the main contribution of this study is the optimization of the portal frames by combining both steels, analysing the resulting costs influence on the final dimensions. Besides, the topological optimization of each steel component within the structure is also defined, in accordance with the following variables: weather conditions, span, paint thickness, and cost of steel. The results mainly confirmed that using both FR and S275 grades with intumescent painting is the Pareto optimum when considering performance, feasibility and costs of such portal frames widely used for industrial facilities.

Microstructure of Tool Steel Castings for Cold-Work Die Inserts (냉간금형 인서트(insert)용 주강의 미세조직)

  • Kang, Jun-Yun;Park, Jun-Young;Kim, Hoyoung;Kim, Byunghwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.5
    • /
    • pp.197-206
    • /
    • 2017
  • The microstructure of a high-carbon and high-chromium cast steel (HK700) for cold-work die inserts was analyzed by advanced scanning electron microscopy. A continuous network of primary $M_7C_3$ carbide was developed among austenitic matrix after casting. A small amount of $M_2C$ was added to the carbide network owing to the enrichment of Mo and W during the solidification. After quenching in which the austenitization was performed at $1030^{\circ}C$ and double tempering at $520^{\circ}C$, the network structure of $M_7C_3$ was preserved while most of the matrix was transformed to martensite because of additional carbide precipitation. The $M_2C$ in the as-cast microstructure was also transformed to $M_6C$ due to its instability. The continuous network of coarse carbides owing to the absence of hot-working had little influence on the hardness after quenching and tempering, whereas it resulted in severe brittleness upon flexural loading.