• Title/Summary/Keyword: hot-dip galvanizing coating

Search Result 31, Processing Time 0.029 seconds

Study on Flaking Resistance of Hot-dip Galvanizing Coating

  • Taixiong, Guo;Ping, Yuan;Yongqing, Jin;chunfu, Liu;Wei, Li
    • Corrosion Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.143-146
    • /
    • 2010
  • For the issue of flaking of the hot-dip galvanizing coating during drawing, the microcosmic characteristics of the coatings have been analyzed and experiments have been done to investigate the influence of coating thickness, Al content and steel substrate strength on its flaking-resistance. The results show that the fact of flaking is that the coating partially flaked off at the position far away from interface of steel substrate and coating, and not entirely flaked off from steel substrate because of poor adhesion. The flaking-resistance of coating decreases with the increasing of coating thickness and steel substrate strength, and increases with the increasing of Al content in coating at the same experimental conditions.

A Study on Detecting Dross in Coating Layer on Hot-dip Galvanizing Steels (용융아연 도금강판의 도금층에 잔류한 드로스 검출에 관한 연구)

  • 김유철;이호종
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.6
    • /
    • pp.466-474
    • /
    • 2003
  • To develop a method of detecting dross in coating layer on hot-dip galvanizing steel, chemical etching behavior of the artificial coating layers with top and bottom dross were investigated. After chemical etching with the mixture of picric acid and sodium thiosulfate, each of the top and bottom dross take its distinct color, and alloy layer in coating is also observed. Defects in the coating layers of HGI(hot rolled galvanized iron), CGI(continuous galvanized steel sheet) and GA(galvannealed steel) were analysed, and methods of dross detection which can be applied to inspection process in manufacture were suggested.

Characterization of the Galvanizing Behavior Depending on Annealing Dew Point and Chemical Composition in Dual-Phase Steels

  • Shin, K.S.;Park, S.H.;Jeon, S.H.;Bae, D.C.;Choi, Y.M.
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.247-253
    • /
    • 2010
  • The characteristics of selective oxidation prior to hot-dip galvanizing with the annealing atmosphere dew point and chemical composition in dual-phase steels and their effect on the inhibition layer formation relevant to coating adhesion have been studied using a combination of electron microscopic and surface analytical techniques. The annealed and also galvanized samples of 3 kinds of Si/Mn ratios with varied amounts of Si addition were prepared by galvanizing simulator. The dew point was controlled at soaking temperature $800^{\circ}C$ in 15%$H_2$ -85%$N_2$ atmosphere. It was shown that good adhesion factors were mainly uniformity of oxide particle distribution of low number density and low Si/Mn ratio prior to hot-dip galvanizing. Their effect was the greatly reduced coating bare spots and the formation of uniform inhibition layer leading to good adhesion of Zn overlay. The mechanism of good adhesion is suggested by two processes: the formation of inhibition layer on the oxide free surface uncovered with no $SiO_2$-containing particles in particular, and the inhibition layer bridging of oxide particles. The growth of inhibition layer was enhanced markedly by the delayed reaction of Fe and Al with the increase of Si/Mn ratio.

A NUMERICAL STUDY ON THE COATING THICKNESS IN CONTINUOUS HOT-DIP GALVANIZING (연속 아연 도금 두께에 관한 수치 해석적 연구)

  • Lee, Dong-Won;Shin, Seung-Young;Cho, Tae-Seok;Kwon, Young-Doo;Kwon, Soon-Bum
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • To control the coating thickness of zinc in the process of continuous hot-dip galvanizing, it is known from early days that the gas wiping through an air knife system is the most effective because of the obtainable of uniformity of coating thickness, possibility of thin coating, working ability in high speed and simplicity of control. But, the gas wiping using in the galvanizing process brings about a problem of splashing from the strip edge for a certain high speed of coating. Also, it is known that the problem of splashing directly depends upon the galvanizing speed and nozzle stagnation pressure. In theses connections, in the present study, we proposed two kinds of air knife systems having the same expansion rate of nozzle, and the jet structures and coating thicknesses from a conventional and new proposed nozzles are compared. In numerical analysis, the governing equations consisted of two-dimensional time dependent Navier-Stokes equations, standard k-e turbulence model to solve turbulence stress and so on are employed. As a result, it is found that it had better to use the constant rate nozzle from the point view of the energy saving to obtain the same coating thickness. Also, to enhance the cutting ability at the strip, it is advisable to use an air knife with the constant expansion rate nozzle.

A Numerical Analysis on the Coating Thickness in Continuous Hot-Dip Galvanizing (연속 아연 도금 코-팅 두께에 관한 수치 해석적 연구)

  • Lee, Dong-Won;Shin, Seung-Young;Kim, Byung-Ji;Kwon, Young-Doo;Kwon, Soon-Bum
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2955-2960
    • /
    • 2007
  • To control the coating thickness of zinc in the process of continuous hot-dip galvanizing, it is known from early day that the gas wiping through an air knife system is the most effective because of the obtainable of uniformity of coating thickness, possibility of thin coating, working ability in high speed and simplicity of control. But, the gas wiping using in the galvanizing process brings about a problem of splashing from the strip edge for a certain high speed of coating. And, it is known that the problem of splashing is caused mainly by the existence of separation bubble at the neighbor of the strip surface. In theses connections, in the present study, we proposed two kinds of air knife systems having the same expansion rate of nozzle, and the jet structures and coating thicknesses from a conventional and new proposed nozzles are compared. In numerical analysis, the governing equations consisted of two-dimensional time dependent Navier-Stokes equations, standard ${\kappa}-{\varepsilon}$ turbulence model to solve turbulence stress and so on are employed. As a result, it is found that it had better to use the constant rate nozzle from the point view of the energy saving to obtain the same coating thickness. Also, to reduce the size of separation bubble and to enhance the cutting ability at the strip, it is recommendable to use an air knife having the constant expansion rate nozzle.

  • PDF

Analysis of Edge Overcoating in Continuous Hot-Dip Galvanizing (연속식 용용아연도금 공정에서의 단부 과도금 현상에 대한 수치 해석)

  • Ahn, Gi-Jang;Kim, Sang-Joon;Cho, Choong-Won;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.763-770
    • /
    • 2004
  • The problem of edge overcoating developed near the edge of the steel strip is studied quantitatively in the gas wiping process of continuous hot-dip galvanizing. It has been assumed that the edge overcoating occurs due to the reduced impact pressure of wiping gas on the strip edge and it is one of detrimental problems to the quality of coating products. In order to analyse the edge overcoating problem numerically, three-dimensional unsteady flows due to the gas wiping are calculated by using a commercial code, STAR-CD. Standard $\kappa$-$\varepsilon$ model is used as a turbulence model. The 1D code for calculation of coating thickness is constructed by using continuity and Navier-Stokes equations. The calculation results have shown good agreement with measurements of edge overcoating thickness, taken from galvanizing line trials. Therefore it is conformed that the major cause of edge overcoating is the reduced impact pressure of wiping gas on the strip surface.

Use of High Zinc Bath Entry Strip Temperature to Solve Coating Problems

  • Sippola, Pertti;Smith, David
    • Corrosion Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.175-186
    • /
    • 2010
  • The auto industry is demanding more ductile high-strength steel grades to build lighter and stronger car bodies. The hot-dip galvanizing problems of these new steel grades are creating a demand for an improved method to control zinc wettability. The simplest way to improve zinc wettability on industrial hot-dip galvanizing lines is to increase the strip immersion temperature at zinc bath entry for enhancing the aluminothermic reaction. However, this practice increases the reactivity due to overheating the zinc in the snout which induces the formation of brittle Fe-Zn compounds at the strip/coating interface with the formation of higher amounts of dross in the zinc bath and snout contamination. Thus, this simple practice can only be utilized for short production periods of one to two hours without deteriorating coating quality. This problem has been solved by employing a technique that allows the use of a higher and attuned strip immersion temperature at zinc bath entry while still maintaining a constantly low zinc bath temperature. This has been proven to provide the solution for both the improved wettability and a significant reduction in the amounts of dross in the zinc bath.

Development of Continuous Galvanization-compatible Martensitic Steel

  • Gong, Y.F.;Song, T.J.;Kim, Han S.;Kwak, J.H.;De Cooman, B.C.
    • Corrosion Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • The development of martensitic grades which can be processed in continuous galvanizing lines requires the reduction of the oxides formed on the steel during the hot dip process. This reduction mechanism was investigated in detail by means of High Resolution Transmission Electron Microscopy (HR-TEM) of cross-sectional samples. Annealing of a martensitic steel in a 10% $H_2+N_2$ atmosphere with the dew point of $-35^{\circ}C$ resulted in the formation of a thin $_{C-X}MnO.SiO_{2}$ (x>1) oxide film and amorphous $_{a-X}MnO.SiO_{2}$ oxide particles on the surface. During the hot dip galvanizing in Zn-0.13%Al, the thin $_{C-X}MnO.SiO_{2}$ (x>1) oxide film was reduced by the Al. The $_{a-X}MnO.SiO_{2}$ (x<0.9) and $a-SiO_{2}$ oxides however remained embedded in the Zn coating close to the steel/coating interface. No $Fe_{2}Al_{5-X}Zn_{X}$ inhibition layer formation was observed. During hot dip galvanizing in Zn-0.20%Al, the $_{C-X}MnO.SiO_{2}$ (x>1) oxide film was also reduced and the amorphous $_{a-X}MnO.SiO_{2}$ and $a-SiO_{2}$ particles were embedded in the $Fe_{2}Al_{5-X}Zn_{X}$ inhibition layer formed at the steel/coating interface during hot dipping. The results clearly show that Al in the liquid Zn bath can reduce the crystalline $_{C-X}MnO.SiO_{2}$ (x>1) oxides but not the amorphous $_{a-X}MnO.SiO_{2}$ (x<0.9) and $a-SiO_{2}$ oxides. These oxides remain embedded in the Zn layer or in the inhibition layer, making it possible to apply a Zn or Zn-alloy coating on martensitic steel by hot dipping. The hot dipping process was also found to deteriorate the mechanical properties, independently of the Zn bath composition.

Coating deviation control in traverse direction in a continuous galvanizing line

  • Yoo, Seung-Ryeol;Choi, Il-Seop;Kim, Sang-Jun;Park, Han-Ku;Kwak, Young-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.323-327
    • /
    • 1995
  • A new air knife system for coating thickness control in hot dip galvanizing process had been developed and installed on the CGL in Pohang Steel Works, POSCO. This new system consists of air knives with remotely adjustable nozzle slot and an automatic control system which can control both longitudinal and traverse coating deviations. Based on the optimal control algorithm, a traverse coating deviation control was designed. The controller controls the lip profile of the air knives with flexible structure according to the deviation of coating weight. From the measured values which are dependent on the strip width, the lip gaps are calculated with optimal algorithm and the model of the coating deviation. Time delay between knives and a coating thickness gauge is solved by the Smith Predictor.

  • PDF

Study on Corrosion and Structural Performance in Hot-Dip Galvanizing Steel (용융아연도금 철근의 부식 특성 및 구조적 특성에 대한 연구)

  • Kwon, Seung-Jun;Lee, Sang-Min;Lee, Myung-Hoon;Park, Sang-Soon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.613-621
    • /
    • 2012
  • Steel corrosion is one of the most critical deteriorations in concrete structures due to the problems associated with both durability and structural safety issues. For protection of steel against corrosion problems, researches to improve concrete durability and steel corrosion protection such as rebar coating by hot-dip galvanizing steel have been carried out. This study was performed to quantitatively evaluate anti-corrosion and structural performance of concrete structures reinforced with hot-dip galvanizing steel rebar. Preliminary tests for several metal coatings such as zinc, aluminum, and their alloy (Zn 45% + AL 55%) were performed. After evaluation of corrosive characteristics, Zn was selected for the coating material and the corrosion behaviors in Zn-coated steel were evaluated in various conditions. Furthermore, tensile and adhesive strengths were evaluated for the normal and the hot-dip galvanized steel. The crack patterns and structural behaviors of RC specimens with the normal and coated steel were investigated. Also, corrosion characteristics including corrosion in various coating metal and potential change in metal with notch were evaluated. Structural performances of tensile and adhesive strengths as well as RC beam behavior under flexural/shear loading were evaluated. The test and evaluation results showed that the applicability of hot-dip galvanized steel rebar can be used as corrosion resistant reinforcements for RC structures.