• 제목/요약/키워드: hot working

검색결과 321건 처리시간 0.034초

프로세스 시뮬레이션에 의한 제 2종 흡수식 열펌프 성능에 관한 연구 (A Study on the Performance of an Absorption Heat Transformer with Process Simulation)

  • 조승연;김영인
    • 대한설비공학회지:설비저널
    • /
    • 제16권3호
    • /
    • pp.295-304
    • /
    • 1987
  • The purpose of this study is to develop a computer model for simulating the water-lit hium bromide absorption heat transformer (AHT) Including all major components and to find the flexibility in operation. The effect of source hot water temperature, cooling water temperature, useful hot water flow rate, cooling water flow rate and evaporator circulation flow rate were investigated. The coefficient of performance (COP), temperature boost $({\Delta}T\;=\;T_A\;-\;Ti)$ and concentration variations can be predicted. The performance study indicates that the performance of AHT increases for the waste hot water temperature increasing and with a decrease of the cooling water temperature. The effect on performances of useful hot water flow rape is significant except on temperature boost. Also the effects on performance of cooling water flow rate and evaporator circulation flow rate are small. It is shown that the computer program is valuable to predict the performance of absorp-tion heat transformer units at various working corditions.

  • PDF

3 차원 열전달/열응력 해석을 통한 STD61 열간 금형강의 하드페이싱 재료 및 두께 예측 (Estimation of Hardfacing Material and Thickness of STD61 Hot-Working Tool Steels Through Three-Dimensional Heat Transfer and Thermal Stress Analyses)

  • 박나라;안동규
    • 대한기계학회논문집A
    • /
    • 제38권4호
    • /
    • pp.427-436
    • /
    • 2014
  • 이 연구에서는 STD61 열간금형강 상부에 생성되는 하드페이싱층에 적합한 하드페이싱 재료와 두께를 3 차원 비정상 열전달 및 열응력 해석을 통하여 예측하고자 한다. Stellite6, Stellite21과 19-9DL 초합금을 하드페이싱 재료로 적용하였다. 하드페이싱 재료와 두께가 하드페이싱된 시편 내부 온도, 열응력 및 변형률 분포 변화에 미치는 영향에 대하여 분석하였다. 이 결과로부터 큰 열전도도를 가지는 재료로 얇은 하드페이싱 층을 생성하는 것이 열전달 특성 측면에서는 효과적인 것을 알 수 있었다. 또한, Stellite21 초합금으로 2 mm 두께의 하드페이싱부를 STD61 열간 금형강 상부에 생성할 경우, 하드페이싱부와 기저부의 경계부에서 유효응력 및 주변형률 편차가 최소화됨을 알 수 있었다. 이 결과들로부터 STD61 열간금형강에 적합한 하드페이싱 재료와 두께를 예측할 수 있었다.

의복을 활용한 열중증 예방 대책에 관한 연구 동향 조사: 일본의 실용 지향적 연구를 중심으로 (Research trends on prevention of heat stroke using clothing: Focusing on practical research in Japan)

  • 손수영
    • Human Ecology Research
    • /
    • 제56권5호
    • /
    • pp.473-491
    • /
    • 2018
  • This study identifies Japanese study content on heat stroke prevention measures using clothes, provides basic data for quantitative wearing assessment studies, presents a developmental direction for those, and helps invigorate further research. Studies were collected concerning clothing-based heat stroke measures in order to analyze the following factors: current status of heat stroke by industry and working environment, heat stroke and body cooling method, clothing microclimate and air circulation in a hot environment, hot environments and wearable sensors, and heat stress reduction and skin exposure. The current WBGT standard does not consider the diversity of wearing clothes according to the working environment. Therefore, it is preferable to add a correction value in consideration of design, materials, and ventilation to prevent heat strokes. For the heat stroke and body cooling method, wearing water-perfused clothing is effective to reduce heat stress and maintain exercise ability. Changing the material and design of clothing or wearing air-conditioned clothing can improve ventilation and the clothing microclimate. However, further evaluation is needed on the effectiveness of air-conditioned clothing as a heat stroke prevention product. The measurement method using a wearable sensor can provide real-time data on the body response due to working in a hot environment. Therefore, it is an effective alarm for heat stroke. Skin exposure area and heat dissipation efficiency should be considered to prevent heat stroke. Reducing the covering area by exposing the head, neck, and limbs, and wearing breathable material can prevent heat stroke from increased body temperature.

Magnetic Properties of $Nd_{12}Dy_2Fe_{73.2}Co_{6.6}Ga_{0.6}B_{5.6}$ magnets fabricated by current-applied pressure-assisted method

  • Kim, H. T.;S. H. Cho;Kim, Y. B.;G. A. Kapustin;Kim, H. S.
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2002년도 동계연구발표회 논문개요집
    • /
    • pp.232-233
    • /
    • 2002
  • Nanostructed high energy Nd-Fe-B based bulk magnet can be prepared by hot-working process (hot press and die-upset) from melt-spun amorphous or nanocrystalline powder.[1] Recently, we have investigated a modified method, current-applied pressure-assisted (CAPA) process, to produce nanocrystalline isotropic and anisotropic NdFeB magnets. The process consists of current-applied pressing the melt-spun powders to obtain isotropic precursor subsequent current-applied deforming the precursor to obtain textured magnet.[2-3] (omitted)

  • PDF

Numerical Analysis of Heat and Mass Transfer in a Calandria Based Reactor

  • Tupake Ravindra S;Kulkarni PS;Rajan NKS
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.281-282
    • /
    • 2003
  • Numerical investigations are carried out to study the mass flux and temperature distribution in a calandria using a 3-D RANS code. The computations made for simulations of flow and convective heat transfer with near-to working conditions. The work provides an estimate of the safe working limits of the heat dissipation by virtue of prediction of the 'hot spots' in the calandria. The work assumes significance for preliminary designs of the reactors and for detailed critical parametric analysis that would be otherwise more expensive.

  • PDF

MICROSTRUCTURAL CHARACTERISTICS OF HOT FORGED AL 6061 ALLOY

  • Kwon Y.-N.;Lee Y.-S.;Lee J.-H.
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The 8th Asian Symposium on Precision Forging ASPF
    • /
    • pp.55-58
    • /
    • 2003
  • Many researches have been already done on the issues of high temperature deformation and the microstructural evolution. The information has been very useful for the plasticity industry, especially successful for the extrusion. However, the parts made with forging usually have a complex shape. It is difficult to control the distribution of the variables like strain, strain rate and temperature rise due to the working heat during a hot-forging process. Consequently, the microstructural variation could be occurred depending on the plastic deformation history that the forged part would get during a hot forging. In the present study, the microstructural characteristic of a hot-forged 6061 aluminum alloy has been discussed on the aspect of grain size evolution. A forging of 6061 aluminum alloy has been carried out for a complex shape with a dimensional variation. Also, finite element analysis has been done to understand how the deformation variables such as strain, strain rate give an influence on the microstructure of a hot forged aluminum product.

  • PDF

보온터널 난방을 위한 온수난방용 코일튜브 열교환기의 열전달 특성 (Heat Transfer Characteristics of Coil Tube Heat Exchanger for Hot Water Heating of Greenhouse Thermal Tunnel)

  • 유영선;강금춘;김영중;백이;강연구;이형모
    • Journal of Biosystems Engineering
    • /
    • 제31권5호
    • /
    • pp.430-435
    • /
    • 2006
  • Greenhouse horticulture in South Korea covered about 52,000 ha in 2005. Greenhouse area of about 12,000 ha has been heated during winter season with heating cost of $20{\sim}40%$ of total Production cost. Farmers engaged in greenhouse horticulture were changed into aged people. Therefore the laborsaving of working process and the saving of greenhouse heating cost should be accomplished simultaneously to increase income of greenhouse horticulture. The best method for saving of greenhouse heating cost is to install thermal tunnels into greenhouse. Then hot air heaters using fossil fuel should be changed into hot water heaters. In other words air heating using forced convection should be changed into natural convection system. In this research coil tube made of flexible PE pipe was designed as hot water heat exchanger and its heat exchanging characteristics were analyzed. This new heat exchanger has been adopted as a natural convection system for hot water heating of greenhouse horticulture.

용접식 판형열교환기에서 작동유체의 유량과 온도변화에 따른 성능특성 고찰 (Investigation of Performance Characteristics in a Welded Plate Heat Exchanger according to Mass flow rate and Temperature)

  • 함정균;김민준;안성국;조홍현
    • 한국지열·수열에너지학회논문집
    • /
    • 제14권4호
    • /
    • pp.20-26
    • /
    • 2018
  • In this study, the performance characteristics of a welded plate heat exchanger was investigated experimentally. Performance tests were carried out according to the flow rate and inlet temperature of working fluid. As a result, the heat transfer capacity increased by 335.5 kW with an increasing the flow rate and temperature difference between hot and cold side. However, the overall heat transfer coefficient was increased with the increase of flow rate, and it was not effected significantly from inlet temperature difference between hot and cold working fluid. The pressure drop was increased by 55.78 kPa with an increasing the frow rate when the flow rate ratio between hot and cold side 1:1. However, the tendency of pressure drop was difference when flow rate ratio wasn't 1:1. In case that the flow rate ratio between hot and cold side was not 1:1, the pressure drop at the low flow rate side was higher than that when the flow rate ratio was 1:1, while pressure drop of the other side was decreased compared to that when the flow rate ratio was 1:1.

통기구 유무와 옷 길이 차이에 따른 건설현장 작업복의 온열생리반응 (Thermo-physiological Responses by Presence of Vents and Difference in Clothing Length for Construction Site Working Clothes)

  • 김성숙;김희은
    • 한국의류산업학회지
    • /
    • 제20권2호
    • /
    • pp.202-209
    • /
    • 2018
  • This study examined thermo-physiological responses according to the design change of construction site working clothes (control (C) working clothes; prototype (P) working clothes). We measured rectal temperature, skin temperature, micro-climate within the clothes and sweat rate. In the evaluation of physiological functionality, based on pattern improvement in working clothes, P working clothes showed significantly lower rectal temperatures, trunk and thigh skin temperatures than C working clothes. It is preferable that rectal temperature should be kept low during work that is not favorable to an increase in body temperature. P working clothes were more physiologically functional than C working clothes. In addition, P working clothes showed significantly lower temperatures in the trunk and thigh parts in a micro climate temperature. We could explain that the side seam zipper on the pants and the gusset on armpit parts create an air permeability effect of lowering the temperature of micro-climate. Aggressive ventilation through the slit of the garment is an important factor for the restoration of the physiological function of the worker at rest between work. Sweat rate showed a higher level in C working clothes than P working clothes. When working in a hot environment, workwear needs to be designed so that the worker is not exposed to thermal stress. Therefore, it was evaluated that the P work clothes used in this study alleviated the physiological burdens of heat.

배전선로 무정전 활선작업용 Manipulator 개발현황 및 사례 (Development and Case of Manipulator Robot for Live-Working on Distribution Lines)

  • 김재훈;김승호;김창회;이흥호;한상옥
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 춘계학술대회 논문집 전기설비전문위원
    • /
    • pp.45-50
    • /
    • 2005
  • Nowadays, economical and social environments are changing to the type of an advanced country for development of techniques in power industry. So most of workers are recently avoiding the 3D works and asking for safety of working environment, etc. in highly dangerous parts such as hot line working on distribution lines, especially. Therefore, most advanced countries are using the support-arm or robotic systems on distribution line works for securing the construction reliability, economical feasibility and protection of linemen from the electric shock and so forth. In special Japanese electric power companies are using the robotic system named manipulator. In Korea, a support-arm has been developed for safety and facility in live working on distribution lines but not widely supplied. In this paper we will introduce development cases of support arm and manipulator robot for live working on distribution lines.

  • PDF