• Title/Summary/Keyword: hot rolling reduction

Search Result 63, Processing Time 0.028 seconds

Microstructure and Mechanical Property of Aluminum Powder Compact by Powder-in Sheath Rolling Method (분말시스압연법에 의해 제조된 알루미늄 분말성형체의 조직 및 기계적 성질)

  • 이성희
    • Journal of Powder Materials
    • /
    • v.9 no.3
    • /
    • pp.153-160
    • /
    • 2002
  • A nitrogen gas atomized aluminum powder was consolidated by powder-in sheath rolling method. A pure aluminum tube with outer diameter of 12 mm and wall thickness of 1mm was used as a sheath. The aluminum tube filled with the aluminum powder, first, was cold-rolled to the thickness of 6mm for performing, and then consolidated by the cold rolling and/or subsequent hot rolling at 360, 460 and $560^{\circ}C$. The aluminum powder compact fabricated by the sheath rolling showed high relative density more than 0.96 at any rolling conditions. The 0.2% proof stress increased with increasing hot rolling reduction and hot rolling temperature. Tensile strength was hardly affected by change in the hot rolling reduction, whereas it decreased with increasing hot rolling temperature. The powder compact showed the large elongation when cold rolling or hot rolling reduction was large. It was found that the sheath rolling was an effective method for consolidation of aluminum powder.

Size-controlled Growth of Fe Nanoparticles in Gas Flow Sputtering Process

  • Sakuma, H.;Aoshima, H.;Ishii, K.
    • Journal of Magnetics
    • /
    • v.11 no.3
    • /
    • pp.103-107
    • /
    • 2006
  • In grain oriented electrical steel process, hot band annealing has thought to be essential for obtaining good magnetic properties. New hot rolling method of heavy reduction in early hot rolling stage was applied to obtain good magnetic properties in GO process without hot band annealing. Hot rolling was carried out by varyinghot rolling reduction distribution along hot rolling pass. The heavy hot rolling reduction in rear stand improves the magnetic flux density in the case of no hot band annealing. The hot band specimens of the heavy reduction in front stand shows the elongated hot deformed microstructures in the center layer and strong {001}<110> texture.On the contrary, the heavily reduced specimens in rear stand shows the recrystallization in the center layer of hot band and strong {111}<112> and {110}<001> textures.

Investigation of Effect of Hot Rolling Oil of on Rolling with HSS Roll (고속도공구강롤을 적용한 열간유압연 사용특성 연구)

  • 유재희;황상무;김철희
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.115-118
    • /
    • 1997
  • Recently, hot rolling oil lubrication technology is required to face with the new environments such as the rapid introduction of high wear resistent high speed steel roll the development of continuous hot rolling technology. In the hot strip mill, according to rolling and quality required conditions are constrict, Roll material of hot rolling finishing stand is changing Hi-Cr Roll to High Speed Steel [HSS] Roll. The problem of HSS Roll of roll force and strip scale defects are increasing in hot strip mill, So we have tested HSS Roll in hot rolling simulator as rolling condition, rolling speed, draft, hot oil concentration. To reduce roll force and prevent scale defects. We get some merit rolling force, rolling torque, roll wear reduction, roll and strip surface roughness and hot rolling critical oil concentration 0.4%. Finally we are going to investigate the effect of hot rolling oil of on rolling with HSS Roll.

  • PDF

Analysis of Friction Coefficient Dependent on Variation of Steel Grade and Reduction Ratio in High Temperature Rolling Process (고온압연공정에서 강종 및 감면율 변화에 따른 마찰계수 변화 분석)

  • Her, J.;Lee, H.J.;Na, D.H.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.18 no.5
    • /
    • pp.410-415
    • /
    • 2009
  • Experimental and numerical studies were performed to examine the effect of material temperature and reduction ratio on friction coefficient during hot flat rolling. We carried out a single pass pilot hot flat rolling test at the temperatures range of $900{\sim}1200^{\circ}C$ and measured the spread of deformed material while reduction ratio varied from 20% to 40%. Materials used in this study were a high carbon steel and two alloy steels. The dimension of specimen used in hot rolling experiment was $50mm{\times}50mm{\times}300mm$. We performed a series of finite element simulation of the hot rolling process to compute the friction coefficient change in terms of steel grade and reduction ratio. Results showed that temperature dependency of friction coefficient is not noteworthy but the effect of reduction ratio on friction coefficient is quite large. For high carbon steel, friction coefficient at reduction ratio of 30% is lower than that at that of 20%. Meanwhile friction coefficient at reduction ratio of 40% was one and half times large compared with that at that of 20%. The effect of steel grade on friction coefficient was significant when reduction ration was large, e.g., 40%.

Deformation Behavior & Rolling Effect on the Hot Rolling of High Nitrogen Stainless Steel (고질소강의 열간압연시 변형거동 및 압연효과)

  • Kim, Y.D.;Kim, D.K.;Lee, J.W.;Bae, W.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.329-332
    • /
    • 2008
  • Nowadays, It is required human body-friendly, good mechanical properties, and economical efficiency material, simultaneously. The material to meet above requirement condition rear up high nitrogen stainless steel(HNS). However, HNS have a lot of problem such as poor workability, hot crack sensitivity. So, It is needed the condition of plastic working to overcome above many problem. In this study, VIM ingot with 100kg was made by pressurized vacuum induction melting. And then, The slab perform for hot rolling was prepared by open-die forging. Hot rolling process was performed by computer simulation according to change of height reduction, rolling temperature, heating numbers, rolling pass and so forth. The results of analysis were investigated between analysis and lab-scale rolling product.

  • PDF

Plastic characteristic analysis of width reduction process in hot roughing mill (열간조압연 공정에서의 폭 압하 공정시 슬래브의 변형 특성)

  • Heo, Su-Jin;Lee, Sang-Ho;Byun, Sang-Min;Park, Hae-Do;Lee, Jong-Bin;Kim, Byung-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.544-548
    • /
    • 2007
  • In general, final width of hot strip should be accomplished in this stage because width reduction of strip hardly appears during typical finishing mill. However, it is difficult to control the width of strip in the roughing mill process as the horizontal rolling of strip is subsequently performed after the vertical rolling. It is therefore important to obtain the deformation rolling direction on strip width to minimize the width spread of strip during horizontal rolling after vertical rolling. Generally there is Sizing press type and Edger-roll type. The width reduction process in sizing press has small amount of width spread compared with the edger. However, productivity by the sizing press process is much lower than those of the edger. In this study, sizing press and Edger-roll process parameters in a sheet rolling mill were set at specified values and the effect of the change in these parameters on product quality and process performance were evaluated.

  • PDF

A Study on the Development of Hot Rolling Process for 18Cr-10Mn-0.44N2 (18Cr-10Mn-0.44N2 고질소강의 열연공정개발에 관한 연구)

  • Kim, Y.D.;Cho, J.R.;Lee, J.W.;Bae, W.B.
    • Transactions of Materials Processing
    • /
    • v.20 no.4
    • /
    • pp.296-302
    • /
    • 2011
  • The objective of this paper is to determine the effect of process parameters on the behavior of a 18Cr-10Mn-$0.44N_2$ nitrogen steel sample deformed by hot rolling. Compression tests were carried out at high temperatures to determine the flow stresses needed for a finite element(FE) analysis. The strain rate, ranging from 0.1 to $1.0s^{-1}$, significantly affected the flow stress at temperatures higher than $1,000^{\circ}C$. Non-isothermal rolling simulations and laboratory rolling tests were performed with plate specimens 14.5mm thick, 135mm wide and 226mm long. A rolling reduction of 15% per pass leading to a cumulative rolling reduction of 60% was determined as optimal. The extension ratio of 176.5% in the length direction was about 30.4 times greater than the extension ratio of 5.8% in the width direction. Isotropic properties for tensile strength, microstructure and grain size were measured after mock-up hot rolling tests. The results from the mockup tests were found to be in good agreement with those of the simulations.

The Effect of Process Variables on Strip Width Spread and Prediction in Hot Finish Rolling (열간 사상압연에서 스트립 폭 퍼짐의 공정변수 영향 및 예측에 관한 연구)

  • Jeon, J.B.;Lee, K.H.;Han, J.G.;Jung, J.W.;Kim, H.J.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.25 no.4
    • /
    • pp.235-241
    • /
    • 2016
  • Dimensional accuracy of hot coil is improved by precise control of thickness profiles, flatness, width and winding profile. Especially, precise width control is important because yield could be increased significantly. Precise width control can be improved by predicting the amount of width spread. The purpose of this study is to develop the advanced prediction model for width spread in hot finish rolling for controlling width precisely. FE-simulations were performed to investigate the effect of process variables on width spread such as reduction ratio, forward and backward tension and initial width at each stand. From the statistical analysis of simulated data, advanced model was developed based on the existing models for strip width spread. The experimental hot rolling trials showed that newly developed model provided fairly accurate predictions on the strip width spread during the whole hot finishing rolling process.

Through-Thickness Variation of Strain and Microstructure of AA1050 Processed by High Speed Hot Rolling (고속열간압연가공된 AA1050의 두께방향으로의 변형량 및 미세조직 변화)

  • Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.18 no.9
    • /
    • pp.492-496
    • /
    • 2008
  • The through-thickness variations of strain and microstructure of high-speed hot rolled 1050 pure aluminum sheet were investigated. The specimens of 1050 aluminum were rolled at temperatures ranging from 410 to $560^{\circ}C$ at a rolling speed of 15 m/s without lubrication and quenched in water at an interval of 30ms after rolling. The redundant shear strain induced by high friction between rolls and the aluminum sheet was increased largely beneath the surface at a rolling reduction above 50%. Recrystallization occurred in the surface regions of the specimen rolled to reduction of 65% at $510^{\circ}C$, while only recovery occurred in the other regions.

Computation of High Temperature Friction Coefficient of SCM435 Steel (SCM435 강의 고온마찰계수 계산)

  • Sung, J.U.;Cho, S.H.;Lee, H.J.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.20 no.3
    • /
    • pp.243-249
    • /
    • 2011
  • In this study, an approach designed to compute high temperature friction coefficients for SCM 435 steel through a pilot hot rolling test and a finite element analysis, is proposed. Single pass pilot hot flat rolling tests with reduction ratios varying from 20 to 40% were carried out at temperatures ranging from 900 to $1200^{\circ}C$. In the proposed approach, the friction coefficient is calculated by comparing the measured strip spread and the roll force with the simulation results. This study showed that the temperature and reduction ratio had a significant influence on the friction coefficient. As both material temperature and reduction ratio become higher, the friction coefficient increases monotonically. This finding is not in agreement with the Ekelund model, which is widely used in the analysis of the hot rolling process. In the present work, the friction coefficient at a reduction ratio of 40% was found to be 1.2 times greater than that at a reduction of 30%. This higher friction coefficient means that an increment of the roll thrust force is expected at the next stand. Therefore, a roll pass designer must understand this phenomenon in order to adjust the reduction ratio at the stands while keeping the driving power, the roll housing structure and the work roll strength within the allowable range.