• Title/Summary/Keyword: hot press forming steel

Search Result 43, Processing Time 0.016 seconds

Elasto-Plastic Finite Element Analysis in Consideration of Phase Transformations (상변태를 고려한 탄소성 유한요소 해석)

  • Lee, M.G.;Kim, S.J.;Jeong, W.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.334-336
    • /
    • 2009
  • An elastic-plasticity model during the austenitic decomposition was derived and implemented to incorporate the two important deformation behaviors observed during the phase transformations: the volumetric strain and transformation induced plasticity due to the temperature change and phase transformation. To obtain transformed phase volume fractions during cooling, the fourth order Runge-Kutta method was used to solve the Kirkaldy's phase kinetics model which is function of temperature, austenitic grain size and chemical composition. The volumetric strain was calculated by considering the densities of constituent phases, while the transformation induced plasticity was based on the micro-plasticity due to the volume mismatch between soft austenitic phase and other harder phases. The constitutive equations were implemented into the implicit finite element software and a simple boundary value problem was chosen as a model problem to validate the effect of transformation plasticity on the deformation behavior of steel under cooling from high temperature. It was preliminary concluded that the transformation plasticity plays a critical role in relaxing the developed stress during forming and thus reducing the magnitude of springback.

  • PDF

A Study on Design Automation of Cooling Channels in Hot Form Press Die Based on CATIA CAD System (CATIA CAD 시스템 기반 핫폼금형의 냉각수로 설계 자동화에 관한 연구)

  • Kim, Gang-Yeon;Park, Si-Hwan;Kim, Sang-Kwon;Park, Doo-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.147-154
    • /
    • 2018
  • This paper focuses on the development of a support system that can rapidly generate the design data of a hot-form die with cooling channels, commonly known as hot stamping technology. We propose a new process for designing hot-form dies based on our (automated) system, whose main features are derived from the analysis of the design requirements and design process in the current industry. Our design support system consists of two modules, which allow for the generation of a 3D geometry model and its 2D drawings. The module for 3D modeling automation is implemented as a type of CATIA template model based on CATIA V5 Knowledgeware. This module automatically creates a 3D model of a hot-form die, including the cooling channels, that depends on the shape of the forming surface and the number of STEELs (subsets of die product) and cooling channels. It also allows for both the editing of the positions and orientations of the cooling channels and testing for the purpose of satisfying the constraints on the distance between the forming surface and cooling channels. Another module for the auto-generation of the 2D drawings is being developed as a plug-in using CAA (CATIA SDK) and Visual C++. Our system was evaluated using the S/W test based on a user defined scenario. As a result, it was shown that it can generate a 3D model of a hot form die and its 2D drawings with hole tables about 29 times faster than the conventional manual method without any design errors.

Stress concentration factors test of reinforced concrete-filled tubular Y-joints under in-plane bending

  • Yang, Jun-fen;Yang, Chao;Su, Ming-zhou;Lian, Ming
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.203-216
    • /
    • 2016
  • To study the stress concentration factors (SCFs) of concrete-filled tubular Y-joints subject to in-plane bending, experiments were used to investigate the hot spot stress distribution along the intersection between chord and brace. Three concrete-filled tubular chords forming Y-joints were tested with different reinforcing components, including doubler-plate, sleeve, and haunch-plate reinforcement. In addition, an unreinforced joint was also tested for comparison. Test results indicate that the three different forms of reinforcement effectively reduce the peak SCFs compared with the unreinforced joint. The current research suggests that the linear extrapolation method can be used for chords, whereas the quadratic extrapolation method must be used for braces. The SCF is effectively reduced and more evenly distributed when the value of the axial compression ratio in the chord is increased. Furthermore, the SCFs obtained from the test results were compared to predictions from some well-established SCF equations. Generally, the predictions from those equations are very consistent for braces, but very conservative for concrete-filled chords.