• Title/Summary/Keyword: hot pepper leaf

Search Result 54, Processing Time 0.026 seconds

Establishment of Genetic Transformation System and Introduction of MADS Box Gene in Hot Pepper (Capsicum annuum L.)

  • Lim, Hak-Tae;Zhao, Mei-Ai;Lian, Yu-Ji;Lee, Ji-Young;Eung-Jun park;Chun, Ik-Jo;Yu, Jae-Woong;Kim, Byung-Dong
    • Journal of Plant Biotechnology
    • /
    • v.3 no.2
    • /
    • pp.89-94
    • /
    • 2001
  • In vitro plant regeneration of inbred breeding line of hot pepper (Capsicum annuum L.) was established using leaf and petiole segments as explants. About 28 days old plants were excised and cultured on MS medium supplemented with TDZ and NAA or in combination with Zeatin. In all of the media compositions tested, combination of TDZ 0.5 mg/L, Zeatin 0.5 mg/L, and NAA 0.1 mg/L was found to be the best medium for shoot bud initiation. Young petiole was the most appropriate explant type for the plant regeneration as well as genetic transformation in hot pepper. In this study, HpMADS1 gene isolated from hot pepper was introduced using Agrobacterium-mediated transformation system. Based on the analysis of Southern blot and RT-PCR, HpMADS1 gene was integrated in the hot pepper genome. It has been known that floral organ development is controlled by a group of regulatory factors containing the MADS domain. Morphological characteristics in these transgenic plants, especially flowering habit, however, were not significantly altered, indicating this MADS gene, HpMADS1 may be non-functional in this case.

  • PDF

Rainfastness of 5 Fungicides on the Leaf Surface of Hot Pepper (고추잎 표면에서 5종 살균제의 내우성)

  • Choi, Yun-Kyong;Yu, Ju-Hyun;Chun, Jae-Chul
    • Journal of Applied Biological Chemistry
    • /
    • v.52 no.3
    • /
    • pp.126-132
    • /
    • 2009
  • In order to elucidate the relationship between the rainfastness of fungicides and their water solubilities, the fungicide residues on the leaf surface of hot pepper was assessed and compared after the drop-wise applications of fungicide solutions on leaf surface followed by artificial raining. As the raining was progressed after application of aqueous acetone solution of fungicides, the residue levels of fungicides were drop rapid at the early stage of raining, but the decreasing rates of residue level were slowed down thereafter. The initial rainfastness was reversely proportional to the water solubilities of the fungicides. Whole amount of dimethomorph residue, which water solubility is 18 mg/L, was washed off by 2.5 mm of raining. Although WP formulations of fungicides showed remarkable decreases of rainfastness compared to the aqueous acetone formulations, the fungicides having low water solubility showed better rainfastness. Chlorothalonil and mepanipyrim suspension concentrates was better in rainfastness than their WP formulation, and the rainfastness of mepanipyrim suspension was reversely proportional to the median diameter of suspension particles in the range of 1 to 4 ${\mu}m$. In brief, the rainfastness of 5 fungicides tested on the pepper leaf was, in the early stage of raining, closely related to water solubility. But, as the raining is progressed, the effect of the unknown factor, which is related with the particle size of fungicides, becomes serious.

Seedling Qualities of Hot Pepper according to Seedling Growth Periods and Growth and Yield after Planting (육묘 기간에 따른 고추 묘의 소질과 정식 후 생육 및 수량)

  • Kim, Ho Cheol;Cho, Yun Hee;Ku, Yang Gyu;Bae, Jong Hyang
    • Horticultural Science & Technology
    • /
    • v.33 no.6
    • /
    • pp.839-844
    • /
    • 2015
  • This study was carried out to investigate seedling quality, growth characteristics and yield of hot pepper (Capsicum annum) grown in the open field according to seedling growth periods (SGPs) of 45, 55, 65, 75, and 85 days. Before planting, plant height, node number, leaf area, fresh and dry weight of seedlings were high in longer-SGP treatments, the T/R ratio was high in SGP 45 and SGP 85 treatments compared with other treatments. At 10 weeks after planting, plant height, stem diameter and leaf area of plants treated with SGP 45 and SGP 55 were significantly higher compared to other treatments. Fresh and dry weight of the plant with SGP 45 treatment was greatest, however, the dry matter percentage with SGP 45 was low compared to other treatments. Fruiting number and weight per plant were highest in SGP 45 treatment. Shorter SGP treatments such as 45 and 55 days gave greatly increased total weight of ripened fruit at 18 weeks after planting. Our results showed that SGP for hot pepper grown in the open field influences plant growth parameters and marketable yield, so that SGP 45 to SGP 55 is optimum to cultivate hot pepper plant.

Effect of the Concentration of Humic Acid on Growth and Yield of Organically Cultivated Hot-Pepper (휴믹산 농도가 유기농 고추의 생육 및 수량에 미치는 영향)

  • Kim, Min-Jeong;Shim, Chang-Ki;Kim, Yong-Ki;Park, Jong-Ho;Han, Eun-Jung;Ko, Byong-Gu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.1
    • /
    • pp.67-78
    • /
    • 2017
  • The purpose of this study was to investigate the effect of humic acid on the germination, the growth and the yield of hot pepper when treated with organic hot pepper seedlings and growing season. The germination rate of 0.05% and 0.1% humic acid was higher than that of untreated, but the germination rates of 0.4% and 1.0% humic acid were 90.0% and 86.7%, respectively, compared with the control treatment (96.7%). At 30 days after transplanting, hot pepper treated with low (0.05%) or high (1.0%) concentration of humic acid decreased the growth of hot pepper seedlings, whereas 0.2% humic acid treatment significantly increased a average height (97.6 cm), leaf number (84.7) and fresh weight ($128.1g\;plant^{-1}$) of hot pepper. After 60 days of treatment with humic acid, the height of hot pepper was significantly longer in 0.2% humic acid. The mean green fruit number of 0.2%, 0.1% and 0.05% humic acid were not significantly different among the treatments, but the mean green pepper number of 0.4% and 1.0% humic acid treatments were the higher with 35.2% and 29.1%, respectively than other treatments. However, the fresh weight of green pepper was found to be $111.5g\;plant^{-1}$ more heavier than the untreated in 0.2% humic acid. The total ($5.8kg\;plant^{-1}$) and average ($1.4kg\;plant^{-1}$) fresh weight of pepper were higher than that of untreated control, except for the 1.0% humic acid treatment after 60 days of soil irrigation. The total weight of hot pepper treated with 0.2% and 0.1% humic acid treatment was $9.3kg\;plant^{-1}$ and $8.6kg\;plant^{-1}$, respectively, which were heavier than the other treatments. The effect of humic acid concentrations on soil microbial populations, pH and EC was investigated. The soil bacterial population density of 0.2% humic acid treatment was 3.5 times higher than that of untreated control soil. As the concentration of humic acid increased from 0.05% to 1.0%, pH and EC of hot pepper grown soil also increased.

Influence of Air Temperature and Soil Moisture Conditions on the Growth and Yield of Hot Pepper under a Plastic Tunnel Culture (고추의 비가림재배 시 온도와 토양수분 환경이 생육 및 수량에 미치는 영향)

  • Lee, Hee Ju;Lee, Sang Gyu;Choi, Chang Sun;Kim, Jun Hyeok;Kim, Sung Kyeom;Jang, Yun Ah;Lee, Sang Jung
    • Journal of Environmental Science International
    • /
    • v.24 no.6
    • /
    • pp.769-776
    • /
    • 2015
  • This study was conducted to determine the effects of high temperature and deficit irrigation on growth and yield of hot pepper. Hot pepper was subjected to four irrigation treatments: fully irrigation (FI), 10, 20, and 30 days deficit irrigation (DI) combination with high temperature treatment. Control plants were grown natural environment and conventional culture methods. The plant height treated with high temperature was significantly higher than that of control plant. At FI combination with high temperature treatment, growth parameters such as stem diameter, leaf area, fresh and dry weight were the greatest. The yield was the greatest (2,036 kg/10a) under control, DI combination with high temperature treatment decreased by approximately 42% compare with FI combination with high temperature treatment. The number of abnormal fruits was approximately 38/plant under control, which was the smallest and that of 30 days DI combination with high temperature was higher 3.3 times compare with control. Flower abscission and calcium deficiency induced by DI treatments, especially those physiological disorder promoted by increasing DI treatments period. Results indicated that yield of hot pepper reduced by DI treatments, these results suggest that the growers should irrigate to proper soil moisture for preventing reduction of total fruit yield.

Differential Expression of Three Catalase Genes in Hot Pepper (Capsicum annuum L.)

  • Lee, Sang Ho;An, Chung Sun
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.247-255
    • /
    • 2005
  • Three different catalase cDNA clones (CaCat1, CaCat2, and CaCat3) were isolated from hot pepper (Capsicum annuum L.), and their expression patterns were analyzed at the levels of mRNA and enzyme activity. Northern hybridization showed that the three catalase genes were differentially expressed in various organs, and that expression of CaCat1 and CaCat2 was regulated differently by the circadian rhythm. In situ hybridization revealed different spatial distributions of CaCat1 and CaCat2 transcripts in leaf and stem. In response to wounding and paraquat treatment, CaCat1 mRNA increased at 4-12 h in both paraquat-treated and systemic leaves. In contrast, wounding had no significant effect on expression of the catalase genes. The increase of catalase activity in the paraquat-treated and systemic leaves paralleled that of CaCat1 mRNA, but did not match that of CaCat1 mRNA in paraquat-treated stems. Our results suggest that CaCat1 may play a role in responses to environmental stresses.

The Ecophysiological Changes of Capsicum annuum on Ozone-Sensitive and Resistant Varieties Exposed to Short-Term Ozone Stress (오존 감수성 및 저항성 고추 품종의 생리생태 변화)

  • Yun, Sung-Chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.3
    • /
    • pp.128-132
    • /
    • 2004
  • Ozone effects were studied by plant growth chamber to evaluate the impact of ozone ($O_3$) on the physiology of two hot pepper, Capsicum annuum L., cultivars, 'Dabotab' and 'Buchon'. Forty-day old plants with $5{\sim}7$ leaves were exposed to $O_3$ of <20 and 150 nL/L for 8h/d for 3 days. Net photosynthesis and stomatal conductance were measured and foliar injury was described. Foliar damage due to the treated $O_3$ was different from the varieties. 'Dabotab' was most sensitive to $O_3$ and 'Buchon' was resistant. Symptom of ozone damage on the leaves was bifacial necrosis. Decreases of net photosynthesis by $O_3$ were 56% and 40% on 'Dabotab' and 'Buchon', respectively. Decreases of stomatal conductance by $O_3$ were 66% and 63% on each variety. $O_3$ damage on net photosynthesis was started at the low levels of light on the two hot peppers. In addition, assimilation-internal $CO_2$ concentration curves were not different from the two varieties. In conclusion, $O_3$ closed the stomata and decrease net photosynthesis on hot peppers regardless of the ozone sensitivity on leaf injury, but the difference of ecophysiological responses between the two varieties was not found clearly.

Subcellular Responses in Nonhost Plant Infected with Pathogenic and Non-pathogenic Strains of Xanthomonas axonopodis pv. glycines

  • Jeong, Yong-Ho;Kim, Jung-Gun;Chang, Sung-Pae;Hwang, In-Gyu;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.18 no.3
    • /
    • pp.115-120
    • /
    • 2002
  • Xanthomonas axonopodis pv. glycines, the causal agent of bacterial pustule of soybean, induces hypersensitive response (HR) in a non-host plant, hot pepper (Capsicum annuum). A wild-type strain (8ra) and its non-patho-genic mutant (8-13) of X. axonopodis pv. glycines were inoculated into the pepper leaf tissues and their subcellular responses to the bacterial infections were examined by electron microscopy. Intrastructural changes related to HR were found in the leaf tissues infected with 8ra from 8 h after inoculation, characterized by separation of plasmalemma from the cell wall, formation of small vacuoles and vesicles, formation of cell wall apposition, and cellular necrosis. No such responses were observed in the tissues infected with the mutant. In 8ra, the bacterial cells were attached to the cell walls, with the cell wall material dissolved into and appearing to encapsulate the bacterial cells. The bacterial cells later became entirely embedded in the cell wall material. On the other hand, in 8-13, the bacterial cells were usually not attached tightly to the plant cell wall, and no or poor encapsulation of the bacteria by the wall material occurred, although these were encircled by rather loose wall materials at the later stages.

Effects on Net Photosynthesis in Field-Grown Hot Peppers Responding to the Increased CO2 and Temperature

  • Yun, Sung-Chul;Ahn, Mun-Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.2
    • /
    • pp.106-112
    • /
    • 2009
  • The increased $CO_2$ and temperature (700 ${\mu}$mol.$mol^{-1}$ $CO_2$ and $30^{\circ}C$) was compared with ambient growth conditions (400 ${\mu}$mol.$mol^{-1}$ $CO_2$ and $25^{\circ}C$) in hot pepper. Gas exchange measurements, including net photosynthesis ($P_{net}$) and stomatal conductance ($g_s$), were taken according to treatment in fields of peppers grown in Suwon and Asan during 2008. The increased treatment $P_{net}$ by 35-45% throughout the season and was statistically significant in t-tests (p < 0.001); however, it did not significantly affect $g_s$. In addition, the gas exchange parameters in sun and shade leaves were measured. The difference between the sun and shade leaves was much greater than that between the elevated and ambient treatments, especially at harvest. Four commercial cultivars of hot pepper, Chunhasangsa, Ryukang, Manitta, and Olympic, were also compared by ANOVA. Chunhasangsa had the highest $P_{net}$, which decreased by 30% from the vegetative to the harvest stage. Based on a factorial design, the effect of the increased $CO_2$ and temperature was assessed based on the temperature, $CO_2$, and their interaction effects. Orthogonal contrasts showed that the effects of temperature on $P_{net}$ and $g_s$ were significant, whereas $CO_2$ and their interactions were not.

Characterization of A cDNA encoding A Novel Phenazine Compound in Hot Pepper

  • Kim, Ukjo;Lee, Sang-Jik;Lee, Mi-Yeon;Park, Soon-Ho;Yang, Seung-Gyun;Harn, Chee-Hark
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.109.1-109
    • /
    • 2003
  • From the PMMV (pepper mild mottle virus)-inducible ESTs differentially expressed in Capsicum chinense PI257284, we isolated a full-length cDNA (CcPHZF: Capsicum chinense phenazine), encoding a phenazine biosynthesis protein which catalyzes the hydroxylation of phenozine-1-carboxylic acid to 2-hydroxyphenazine-1-carboxylic acid. Phenazine compound has been known to exhibit broad-spectrum of antibiotic activity against various species of bacteria and fungus. The entire region of CcPHZF is 879 bp in length and the open reading frame predicted a polypeptide of 292 amino acids. The homolog of CcPHZF is not Present in database except clones of AC004044 and NM100203 from Arabidopsis with 58 and 59%, respectively. Genomic Southern analysis indicated that the pepper genome contains a single copy of CcPHZF. The CcPHZF was strongly induced in the pepper leaves 3 days after PMMV treatment, when HR occurs on the leaf surface. Characterization of CcPHZF is underway to investigate if the CcPHZF is related to disease resistance against pathogens.

  • PDF