• Title/Summary/Keyword: hot melt

Search Result 168, Processing Time 0.027 seconds

A study on the filling imbalances in hot-runner mold for internal gear based on injection molding (내측 기어 성형용 핫러너 금형에서의 충전불균형에 관한 연구)

  • No, Byung-Soo;Jea, Duck-Gun;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.1-5
    • /
    • 2008
  • Plastic parts are molded for the purpose of mass production in injection molding. Therefore designer is usually designing molds that has geometrically balanced hot runner lay-out for filling balance at cavities. Although, mold is manufactured with geometrically balanced runner lay-out, there are actually filling imbalances in cavities. These filling imbalances phenomenon are caused by complicated interaction between melt and mold. In this paper, filling imbalances for internal gear based on injection molding in hot-runner mold were investigated by CAE and injection molding experiences.

  • PDF

Hot-Pressed and Die-Upset Mischmetal-Ferroboron Permanent Magnets (핫프레스 및 다이업셋한 미슈레탈-페로보론 영구자석에 관한 연구)

  • ;H. J. Al-Kanani
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.30-34
    • /
    • 2001
  • The magnetic and metallurgical characteristics of Mischmetal(MM) -Ferroboron (FeB) Permanent magnets have been investigated by X-ray diffractometer, scanning and transmission electron microscope and vibrating sample magnetometer under hot-pressing and die-upsetting process. The best magnetic properties obtained in these studies were $H_c$=5.8 kOe, $B_r$=5.0 kG with $(BH)_{max}=7.6 MGOe for melt-spun ribbons, $H_c$=3.0 kOe, $B_r$=4.6 kG with $(BH)_{max}$=2.9 MGOe for hot-pressed magnets and $H_c$=1.8 kOe, $B_r$=5.5 kG with $(BH)_{max}$=4.1 MGOe for die-upset magnets. The higher magnetic properties in die-upset magnets were resulted from alignment of the c-axis along the die-upsetting direction.

  • PDF

Effect of asymmetric magnetic fields on the interface shape in Czochralski silicon crystals (Cz 실리콘 단결정에서 비대칭 자기장이 고액 계면에 미치는 영향)

  • Hong, Young-Ho;Shim, Kwang-Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.4
    • /
    • pp.140-145
    • /
    • 2008
  • Silicon single crystals are grown by Czochralski (CZ) method in different growing conditions. The different shapes of the crystal-melt interface are obtained with various magnetic fields. Effects of zero-Gauss plane (ZGP) shape and magnetic intensity (MI) on the crystal-melt interface in the crystal experimentally are investigated. The shape of ZGP is not only flat but also parabolic, which is due to magnetic ratio (MR) of the lower to upper current densities in the configurations of the cusp-magnetic fields. As the MR increases, the crystal-melt interface becomes more concave. It means that the hot melt can be easily transported to the crystal-melt interface with increasing the MR. Effective shape of the crystal-melt interface is found to depend on the magnetic field in cusp-magnetic CZ method. The experimental results are compared with other studies and discussed.

Magnetic Properties and Microstructure of Nanocrystalline NdFeB Magnets Fabricated by a Modified Hot Working Process

  • Kim, Hyoung-Tae;Kim, Yoon-Bae;Jeon, Woo-Yong;Kim, Hak-Shin
    • Journal of Magnetics
    • /
    • v.7 no.4
    • /
    • pp.138-142
    • /
    • 2002
  • Magnetic properties, microstructure and texture of NdFeB magnets fabricated by a modified hot working process from commercial melt-spun powders (Magnequench; MQPA, MQPB and MQPB+) have been investigated. The hot-pressed isotropic magnet made from MQPA powder, which contains higher Nd content than that of MQPB or MQPB+, shows higher coercivity. The magnet also shows homogenous and fine grains with higher coercivity for higher consolidation pressure. The hot-deformed MQPA magnet shows a strong anisotropy along the press direction with homogeneous platelet Nd$_2$Fe$_{14}$B grains of 50∼100nm in thickness and 200∼500nm in length. The hot-deformed MQPB+ magnet, however, shows low remanence and low coercivity. The microstructure of the magnet consists of two areas; undeformed Nd$_2$Fe$_{14}$B grains and well-aligned but large grains with 3∼4 $\mu$m in length. Low Nd content attributes to the formation of the two different area.

Absorption Enhancer and Polymer (Vitamin E TPGS and PVP K29) by Solid Dispersion Improve Dissolution and Bioavailability of Eprosartan Mesylate

  • Ahn, Jae-Soon;Kim, Kang-Min;Ko, Chan-Young;Kang, Jae-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1587-1592
    • /
    • 2011
  • The aim of the present study was to improve the solubility and bioavailability of a poorly water-soluble drug in human body, using a solid dispersion technique (hot melt extrusion). The solid dispersion was prepared by cooling the hot melt of the drug in the carrier (Vitamin E TPGS and PVP). The dissolution rate of formulation 1 from a novel formulation prepared by solid dispersion technique was equal to release of formulation 6 (40% of eprosartan mesylate is in contrast to teveten$^{(R)}$) within 60 min (Table 1). The oral bioavailability of new eprosartan mesylate tablet having vitamin E TPGS and PVP K29 was tested on rats and dogs. Of the absorption enhancer and polymer tested, vitamin E TPGS and PVP K29, resulted in the greatest increases of AUC in animals (about 2.5-fold increase in rat and dog). When eprosartan mesylate was mixed with the absorption enhancer and polymer in a ratio of 2.94:2:1, vitamin E TPGS and PVP K29 improved eprosartan mesylate bioavailability significantly compared with the conventional immediate release (IR) tablet Teveten$^{(R)}$ (formulation 7). These results show that solid dispersion using vitamin E TPGS and PVP K29 is a promising approach for developing eprosartan mesylate drug products.

Micro Bonding Using Hot Melt Adhesives

  • Bohm, Stefan;Hemken, Gregor;Stammen, Elisabeth;Dilger, Klaus
    • Journal of Adhesion and Interface
    • /
    • v.7 no.4
    • /
    • pp.28-31
    • /
    • 2006
  • Due to the miniaturization of MEMS and microelectronics the joining techniques also have to be adjusted. The dosing technology with viscous adhesives does not permit reproducible adhesive volumes, which are clearly under a nano-liter. A nano-liter means however a diameter of bonding area within the range of several 100 micrometers. Additional, viscous adhesives need a certain time, until they are cross linked or cured. The problem especially in the MEMS is the initial strength, since it gives the time, which is needed for joining an individual adhesive joint. The time up to the initial strength is with viscous, also with fast curing systems, within the range of seconds until minutes. Until the reach of the initial strength, the micro part must be fixed/held. Without sufficient adjustment/clamping it can come to a shift of the micro parts. Also existing micro adhesive bonding processes are not batch able, i.e. the individual adhesive joints of a micro system must be processed successively. In the context of the WCARP III 2006 now an innovative method is to be presented, how it is possible to solve the existing problems with micro bonding. i.e. a method is presented, which is batch able, possess a minimum joining geometry with some micrometers and is so fast that no problems with the initial strength arise. It is a method, which could revolutionize the sticking technology in the micro system engineering.

  • PDF

Effects of Precursor Powders on the Directional Growth of $YBa_2Cu_3O_x$ Superconductors

  • 성현태;한상철;한영희;이준성;김유진;노광수
    • Progress in Superconductivity and Cryogenics
    • /
    • v.1 no.1
    • /
    • pp.15-21
    • /
    • 1999
  • Textured bulk $YBa_2Cu_3O_x$ superconductors samples were grown directionally using different precursors of $YBa_2Cu_3O_x$ power. and a mixture of $YBa_2Cu_3O_5, BaCuO_2 and CuO$ powder. The microstructures and superconducting properties of the samples were compared. The mixture powder produced better microstructures i.e. dense and crack-free so that a higher critical current density was achieved at the same hot-zone temperature of 115$0^{\circ}C$ than the reacted powder does. When the reacted powder used as a precursor, as the hot-zone temperature increased upto 1215$^{\circ}C$, the texture of the sample improved and the critical current density increased. The amount of melt in the sample is of secondary importance for the growth of superconducting $YBa_2Cu_3O_x$ grains. The microstructures and superconductivity of good quality superconductors grown directionally were more strongly influenced by the kind of precursor rather than the amount og melt in a sample.

  • PDF

Deodorization Rate according to Zr-MOF Content and the Properties from Spinning Conditions of Polypropylene Non-woven Fabric Manufactured by Melt-blown Method (Melt-blown법에 의해 제조된 Polypropylene 부직포의 방사 조건별 특성과 기능화된 Zr-MOF 함유량에 따른 소취율 변화에 대한 연구)

  • Choi, Ik-Sung;Min, Mun-Hong;Kim, Han-Il;Lee, Woo-Seung;Noh, Kyung-Gyu;Park, Seong-Woo
    • Textile Coloration and Finishing
    • /
    • v.30 no.3
    • /
    • pp.199-207
    • /
    • 2018
  • In this study, the properties of polypropylene(PP) non-woven fabric spun under various conditions by the Melt-blown method were verified, and the deodorant content and deodorization of PP non-woven fabric after deodorant-treatment were investigated. PP non-woven fabrics are manufactured by varying the temperature of spin beam, hot air temperature and amount, the RPM of collector R/O and the distance between collector and spinneret, which affects the structure of the non-woven fabric. After that, the structural characteristics and air permeability of the non-woven fabric were measured. The experimental results show that the amount of air, the distance between the collector and the spinneret significantly affect the structural characteristics and air permeability of the PP non-woven fabric. And, regardless of the weight of the PP non-woven fabric, the deodorizing effect of UiO-66 MOF deodorant add-on ratio and content was higher.

A Study on the Filling Imbalances between Multi-Cavity in Hot-Runner Mold (핫러너 금형에서 다수 캐비티 사이에 발생하는 충전불균형에 관한 연구)

  • Han Seong Ryeol;Kang Chul Min;Han Kyu Taek;Jeong Yeong Deug
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.173-178
    • /
    • 2005
  • Recently plastic parts are molded for the purpose of mass production in multi-cavity system. Therefore, designer is usually designing mold that has geometrically balanced runner lay-out for filling balance at each cavity. Although, mold is manufactured with geometrically balanced runner lay-out, there are actually filling imbalances in the cavities. These filling imbalances phenomenon are caused by complicated interaction between melt and mold. In this study, based on previous studies for filling imbalances in cold-runner mold, filling imbalances in hot-runner mold were investigated by CAE and injection molding experiments. ABS and PMMA as amorphous polymer, PA as crystalline polymer were used to compare the filling imbalances. There were different results of CAE and experiment. The filling imbalances decreased as injection rate increased without regard to kind of resins and were lower than the one of cold-runner.

A Study on the Filling Imbalances between Multi-Cavity in Hot-Runner Mold (핫러너 금형에서 캐비티사이의 충전불균형 현상에 관한 연구)

  • Han S.R.;Jeong Y.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.598-601
    • /
    • 2005
  • Plastic parts are molded for the purpose of mass production in multi-cavity system. Therefore, designer is usually designing molds that has geometrically balanced runner lay-out for filling balance at each cavities. Although, mold is manufactured with geometrically balanced runner lay-out, there are actually filling imbalances in cavities. These filling imbalances phenomenon are caused by complicated interaction between melt and mold. In this study, based on previous studies for filling imbalances in cold-runner mold, filling imbalances in hot-runner mold were investigated by CAE and injection molding experiments. ABS, PMMA as amorphous polymer and PA, PP as crystalline polymer were used to compare the filling imbalances. The filling imbalances decreased as injection rate increased without regard to kind of resins and were lower than the one of cold-runner.

  • PDF