• Title/Summary/Keyword: hot deformation

Search Result 460, Processing Time 0.022 seconds

A Finite Element Analysis for Densification Behavior and Grain Growth of Tool Dteel Powder Compacts (공구강 분말 성형체의 치밀화 거동과 결정립 성장에 관한 유한 요소 해석)

  • 전윤철
    • Journal of Powder Materials
    • /
    • v.4 no.2
    • /
    • pp.90-99
    • /
    • 1997
  • Densification behavior and grain growth of tool steel powder compacts during pressureless sintering, sinter forging, and hot isostatic pressing were investigated. Experimental data were compared with results of finite element calculations by using the constitutive model of Abouaf and co-workers and that of McMeeking and co-workers. Densification and deformation of tool steel powder compacts were studied by implementing power-law creep, diffusional creep, and grain growth into the finite element analysis. The shape change of a powder compact in the container during hot isostatic pressing was also studied. The theoretical models did not agree well with experimental data in sinter forging, however, agreed well with experimental data in hot isostatic pressing.

  • PDF

Analysis of Hot Isostatic Pressing of Powder Compacts Considering Diffusion and Power-Law Creep (확산과 Power- law 크립을 고려한 압분체 열간정수압압축 공정의 해석)

  • Seo M. H.;Kim H. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.66-69
    • /
    • 2000
  • In order to analyze the densification behaviour of stainless steel powder compacts during hot isostatic pressing (HIP) at elevated temperatures, a power-law creep constitutive model based on the plastic deformation theory for porous materials was applied to the densification. Various densification mechanisms including interparticle boundary diffusion, grain boundary diffusion and lattice diffusion mechanisms were incorporated in the constitutive model, as well. The power-law creep model in conjunction with various diffusion models was applied to the HIP process of 316L stainless steel powder compacts under 50 and 100 MPa at 1125 $!`\acute{\dot{E}}$. The results of the calculations were verified using literature data It could be found that the contribution of the diffusional mechanisms is not significant under the current process conditions.

  • PDF

Analysis for Densification Behavior and Grain Growth of Nanocrystalline Ceramic Powder under High Temperature (나노 세라믹 분말의 고온 치밀화와 결정립 성장의 해석)

  • 김홍기;김기태
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2749-2761
    • /
    • 2000
  • Densification, grain growth, and phase transformation of nanocrystalline ceramic powder were investigated under pressureless sintering, sinter forging, and hot pressing. A constitutive model for densification of nanocrystalline ceramic powder was proposed and implemented into a finite element program (ABAQUS). A grain growth model was also proposed by including the effect of applied stress on grain growth when phase transformation occurs. Finite element results by using the proposed models well predicted densification behavior, deformation, and grain growth of nanocrystalline titania powder during pressureless sintering, sinter forging, and hot pressing. Finite element results by using the proposed model also well predicted experimental data in the literature for densification behavior of nanocrystalline zirconia powder during pressureless sintering and sinter forging.

The grain size prediction of Al-5wt%Mg alloy by FEM (유한요소법을 이용한 Al-5%Mg 합금의 미세조직 크기예측)

  • 조종래
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.249-252
    • /
    • 1999
  • A numerical analysis was perfomed to predict flow curves and dynamic recrystallization behaviors of Al-5%Mg alloy on the basis of results of hot compression tests. The hot compression tests were carried out in the ranges of 350-50$0^{\circ}C$ and 5$\times${{{{ {10 }^{-3 } }}}}~3$\times${{{{ {10 }^{0 } }}}}/sec to obtain the Zener-Hollmon parameter. In the modelling equation the effects os strain hardening and dynamic recrystallization were taken into consideration. A model for predicting the evolution of microstructure in Al-5%Mg alloy during thermomechanical processing was developed in terms of dynamic recrystallization phenomena, The microstructure model was combined with finite element modeling(FEM) to predict microstructure development Model predictions showed good agreement with microstructures obtained in compression tests.

  • PDF

Development of Forward Slip Model in Hot Strip Mill (강판의 열간압연 선진율 예측모델의 개발)

  • 문영훈;천명식;이준정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1597-1603
    • /
    • 1995
  • A prediction model on forward slip has been developed for presetting rolling speed of each finish mill stand in the continuous hot strip roduction. Those factors such as neutral point, friction coefficient, volume fractions undergoing width spread, shape of deformation zone at each side of entry and delivery of the rolls were taken into account. To reduce the speed unbalance between adjacent stands a refining method of adjusting friction coefficient has also been developed. On-line application of the model showed a good agreement in rolling speeds between the predictions and the actual measurements, and gave an outstanding improvement in the travelling stability of strip passing through the finishing mill train.

Analysis for Densification Behavior and Grain Growth of Nanocrystalline Ceramic Powder under High Temperature (나노 세라믹 분말의 고온 치밀화와 결정립 성장의 해석)

  • Kim, Hong-Gee;Kim, Ki-Tae
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.363-368
    • /
    • 2000
  • Densification, grain growth, and phase transformation of nanocrystalline ceramic powder were investigated under pressureless sintering, sinter forging, and hot pressing. A constitutive model for densification of nanocrystalline ceramic powder was proposed and implemented into a finite element program (ABAQUS). A grain growth model was also proposed by including the effect of applied stress on grain growth when phase transformation occurs. Finite element results by using the proposed models well predicted densification behavior, deformation, and grain growth of nanocrystalline titania powder during pressureless sintering, sinter forging, and hot pressing.

  • PDF

The Development of Life Prediction Method for Hot Forming Dies (열간단조용 금형형의 수명예측기법 개발)

  • 이진호;김병민
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06b
    • /
    • pp.54-59
    • /
    • 1998
  • In this study, two kinds of life prediction method for hot forming die are developed . One is empirical method requiring some experiment that evaluate thermal softening of die material accoring to operating conditions. The other is analyticl method that calcuate wear quantity of die occuring during the forming process. Wear is a predominant factor as well as plastic deformation and heat checking . And, these methods are applied to prodict tool life real die producting part for automobile. Thus , the applicability and the accuracy of the presented methods are investigated. Using the verified life prediction method above , optimal blocker die design minimizing the finisher die is done.

  • PDF

Prediction of Recrystallization Behaviors in Hot Forging by the Finite Element Method (열간단조공정중 강의 재결정거동 유한요소해석)

  • 곽우진;이경종;권오준;황상무
    • Transactions of Materials Processing
    • /
    • v.5 no.4
    • /
    • pp.305-319
    • /
    • 1996
  • In this paper a finite element based system is presented for the prediction of the distributions of the recrystallized grain sizes in the workpiece in hot forging. The system adopts a fully coupled finite element thermo-mechanical model for predicting plastic deformation and heat transfer occurring in the workpiece and employs existing metallurgical models relating the recrystalliza-tion behavior with the thermo-mechanical variables such as temperatures strain and strain rate. The system is applied to upsetting of cylindrical preform. The predicted grain sizes are compared with the measurements. It is further applied to forging of a complex-shaped product.

  • PDF

A Study on the Mechanical Properties with the Strain rate and Strain for Aluminum 6061 Alloy in Hot Forging (알루미늄 6061 합금의 열간단조시 변형율속도 및 변형율에 따른 기계적 성질에 관한 연구)

  • 김정식;이영선;김용조;이정환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.154-158
    • /
    • 2002
  • The mechanical properties of Al 6061 excluded bar were deformed in high temperature with the variable deformation conditions and characterized by the tensile test. Three types of different strain rate were experimentally performed by using hydraulic press, crank press and hammer and two types of the nominal strain 0.5 and 0.8 were achieved. To decide optimum forging process, the relationship among the strain rate, strain and mechanical properties was explained by analyzing the microstructures of the forged and heat heated parts. The strength was deeply related with the strain rate due to the dynamic recrystallization (DRX) in hot forging, and the best forging condition was presented in Al 6061 alloy.

  • PDF

Measurement of Mechanical Properties for Hot Press Forming (열간프레스성형에서의 기계적 물성 측정)

  • Ahn, Kang-Hwan;Yoo, Dong-Hoon;Seok, Dong-Yoon;Kim, Hong-Gee;Park, Sung-Ho;Chung, Kwan-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.450-453
    • /
    • 2009
  • In order to overcome drawbacks of the advanced high strength steel such as inferior formability and large springback, the hot press forming process(HPF) has been being applied for forming of automotive sheet parts. Good formability and dimensional accuracy without springback as well as good crash performance of final products are the advantages of the HPF process. In this work, a method to characterize the mechanical properties of the HPF steel was developed based on the simple tension test at high temperatures and its finite element analysis, while it was applied to obtain strain rate and temperature dependent flow curves of the HPF steel. The final flow curves were represented by utilizing the Johnson-Cook type equation both in uniform and post-uniform deformation regions.

  • PDF