• Title/Summary/Keyword: host susceptibility

Search Result 141, Processing Time 0.028 seconds

Elder ages decreases the susceptibility for Helicobacter pylori infection in an animal model (Helicobacter pylori의 감수성과 숙주 연령과의 상관성 연구)

  • Lee, Jin-Uk;Kim, Seung-Hee;Park, Tan-Woo;Kim, Okjin
    • Korean Journal of Veterinary Research
    • /
    • v.47 no.1
    • /
    • pp.77-84
    • /
    • 2007
  • Helicobacter pylori (H. pylori) is an important bacterial pathogen that causes chronic gastritisand is associated with gastroduodenal ulcer disease, adenocarcinoma of the distal stomach, and gastricH. pylori infection associated with host agehave not been well-defined in human. To evaluate the difference in host susceptibility to infection in relationto age of acquisition of H. pylori infection, we designed an experiment involving inoculation of H. pyloriATC 43504 at different ages of Mongolian gerbils. H. pylori was inoculated at 5 weeks and 18 monthsof age, as representatives of early and late infection, respectively. Animals were sacrificed 1 week and 4weeks after challenge, and the stomach was removed from each animal for bacterial culture, histologicalexamination, and polymerase chain reaction test. 5 week-old gerbils revealed infection andmaintained continuously its infection until 4 weeks. However, old gerbils did not maintained H. pyloriinfection. These data suggest the insusceptibility of H. pylori in old Mongolian gerbils and the importanceof animal ages for successful animal experimental infection. Also, the results demonstrated that earlyinfection of H. pylori increases its host susceptibility, as compared to the case with later infection, possiblybecause of differences in host gastric mucosal factors and imunologic responses.

Effects of Diazinon on the Murine Host Defense System

  • Yun, Yeo-Pyo;Kim, Kwan-Hoi;Lee, Se-Chang;Hong, Jin-Tae
    • Journal of Food Hygiene and Safety
    • /
    • v.7 no.2
    • /
    • pp.91-97
    • /
    • 1992
  • Diazinon which is one of the most beavily used organophosphate pesticide in Korea, was examined for its effects on the murine host defense system. Immunotoxicological assay parameters adopted in this study were carbon clearance for macrophage function, susceptibility to tumor challenge, and pathotoxicological indicators, Subchronic exposure of pesticide to rodents resulted in the suppression of immune functions, enhancement of susceptibility to tumor challenge, and moderate histological changes of lymphoid organ without any significant alteration of clinical status.

  • PDF

The Ralstonia pseudosolanacearum Type III Effector RipL Delays Flowering and Promotes Susceptibility to Pseudomonas syringae in Arabidopsis thaliana

  • Wanhui Kim;Hyelim Jeon;Hyeonjung Lee;Kee Hoon Sohn;Cecile Segonzac
    • Molecules and Cells
    • /
    • v.46 no.11
    • /
    • pp.710-724
    • /
    • 2023
  • The plant defense responses to microbial infection are tightly regulated and integrated with the developmental program for optimal resources allocation. Notably, the defense-associated hormone salicylic acid (SA) acts as a promoter of flowering while several plant pathogens actively target the flowering signaling pathway to promote their virulence or dissemination. Ralstonia pseudosolanacearum inject tens of effectors in the host cells that collectively promote bacterial proliferation in plant tissues. Here, we characterized the function of the broadly conserved R. pseudosolanacearum effector RipL, through heterologous expression in Arabidopsis thaliana. RipL-expressing transgenic lines presented a delayed flowering, which correlated with a low expression of flowering regulator genes. Delayed flowering was also observed in Nicotiana benthamiana plants transiently expressing RipL. In parallel, RipL promoted plant susceptibility to virulent strains of Pseudomonas syringae in the effector-expressing lines or when delivered by the type III secretion system. Unexpectedly, SA accumulation and SA-dependent immune signaling were not significantly affected by RipL expression. Rather, the RNA-seq analysis of infected RipL-expressing lines revealed that the overall amplitude of the transcriptional response was dampened, suggesting that RipL could promote plant susceptibility in an SA-independent manner. Further elucidation of the molecular mechanisms underpinning RipL effect on flowering and immunity may reveal novel effector functions in host cells.

Response of Bentgrass Cultivars to Microdochium nivale Isolates Collected from Golf Courses

  • Chang, Tae-Hyun;Chang, Seog-Won;Jung, Geun-Hwa
    • The Plant Pathology Journal
    • /
    • v.27 no.3
    • /
    • pp.232-341
    • /
    • 2011
  • Pink snow mold, caused by Microdochium nivale, is a major disease on cool season turfgrasses in golf courses in northern Unites States. The relative susceptibility of 17 commercial cultivars of three bentgrass species (creeping, colonial and velvet bentgrass) to Microdochium nivale and the aggressiveness of M. nivale eight isolates obtained from infected turfgrasses on golf courses in Wisconsin were evaluated under controlled conditions. For the field trial, susceptibility of 2 year-old 12 commercial bentgrass cultivars was evaluated after inoculating three M. nivale isolates in the fields. There were significant differences in disease severities among the three bentgrass species, particularly between tetraploids (creeping and colonial) and diploid (velvet) species, and among cultivars within each species, indicating that there are varying levels of susceptibility in species and cultivars to M. nivale. Host resistance by days of cold hardening was confirmed, by detecting the resistance by 30 days of cold hardening treatments. In field trial, susceptibility of 12 bentgrass cultivars was highly correlated to the results obtained from growth chamber experiments. The positive correlation of the susceptibility between growth chamber experiments and field trials demonstrates that the growth chamber method is a useful technique for saving time, space and labor to evaluate efficiently pink snow mold susceptibility of bentgrass cultivars. This study could be applied to evaluating susceptibility of bentgrass to pink snow mold and also predicting a prospective evaluation of bentgrass cultivars to pink snow mold in fields in a breeding program.

Innate immune response to oral bacteria and the immune evasive characteristics of periodontal pathogens

  • Ji, Suk;Choi, Youngnim
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.1
    • /
    • pp.3-11
    • /
    • 2013
  • Periodontitis is a chronic inflammation of periodontal tissue caused by subgingival plaque-associated bacteria. Periodontitis has long been understood to be the result of an excessive host response to plaque bacteria. In addition, periodontal pathogens have been regarded as the causative agents that induce a hyperinflammatory response from the host. In this brief review, host-microbe interaction of nonperiodontopathic versus periodontopathic bacteria with innate immune components encountered in the gingival sulcus will be described. In particular, we will describe the susceptibility of these microbes to antimicrobial peptides (AMPs) and phagocytosis by neutrophils, the induction of tissue-destructive mediators from neutrophils, the induction of AMPs and interleukin (IL)-8 from gingival epithelial cells, and the pattern recognition receptors that mediate the regulation of AMPs and IL-8 in gingival epithelial cells. This review indicates that true periodontal pathogens are poor activators/suppressors of a host immune response, and they evade host defense mechanisms.

Propagation of Bombyx mori Nucleopolyhedrovirus in Nonpermissive Insect Cell Lines

  • Woo, Soo-Dong;Roh, Jong-Yul;Choi, Jae-Young;Jin, Byung-Rae
    • Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.133-138
    • /
    • 2007
  • This study addresses the susceptibility of Spodoptera frugiperda (Sf9 and Sf21), Trichoplusia ni (Hi5), and S. exigua (Se301) cells to the Bombyx mori nucleopolyhedrovirus (BmNPV). Although these cells have classically been considered nonpermissive to BmNPV, the cytopathic effect, an increase in viral yield, and viral DNA synthesis by BmNPV were observed in Sf9, Sf21, and Hi5 cells, but not in Se301 cells. Very late gene expression by BmNPV in these cell lines was also detected via ${\beta}-galactosidase$ expression under the control of the polyhedrin promoter. Sf9 cells were most susceptible to BmNPV in all respects, followed by Sf21 and Hi5 cells in decreasing order, while the Se301 cells evidenced no distinct viral replication. This particular difference in viral susceptibility in each of the cell lines can be utilized for our understanding of the mechanisms underlying the host specificity of NPVs.

Microbiome Analysis Revealed Acholeplasma as a Possible Factor Influencing the Susceptibility to Bacterial Leaf Blight Disease of Two Domestic Rice Cultivars in Vietnam

  • Thu Thi Hieu Nguyen;Cristina Bez;Iris Bertani;Minh Hong Nguyen;Thao Kim Nu Nguyen;Vittorio Venturi;Hang Thuy Dinh
    • The Plant Pathology Journal
    • /
    • v.40 no.2
    • /
    • pp.225-232
    • /
    • 2024
  • The microbiomes of two important rice cultivars in Vietnam which differ by their susceptibility to the bacterial leaf blight (BLB) disease were analyzed through 16S rRNA amplicon technology. A higher number of operational taxonomic units and alpha-diversity indices were shown in the BLB-resistant LA cultivar than in the BLB-susceptible TB cultivar. The BLB pathogen Xanthomonas was scantly found (0.003%) in the LA cultivar, whereas was in a significantly higher ratio in the TB cultivar (1.82%), reflecting the susceptibility to BLB of these cultivars. Of special interest was the genus Acholeplasma presented in the BLB-resistant LA cultivar at a high relative abundance (22.32%), however, was minor in the BLB-sensitive TB cultivar (0.09%), raising a question about its roles in controlling the Xanthomonas low in the LA cultivar. It is proposed that Acholeplasma once entered the host plant would hamper other phytopathogens, i.e. Xanthomonas, by yet unknown mechanisms, of which the triggering of the host plants to produce secondary metabolites against pathogens could be a testable hypothesis.

C1qa deficiency in mice increases susceptibility to mouse hepatitis virus A59 infection

  • Kim, Han-Woong;Seo, Sun-Min;Kim, Jun-Young;Lee, Jae Hoon;Lee, Han-Woong;Choi, Yang-Kyu
    • Journal of Veterinary Science
    • /
    • v.22 no.3
    • /
    • pp.36.1-36.12
    • /
    • 2021
  • Background: Mouse hepatitis virus (MHV) A59 is a highly infectious pathogen and starts in the respiratory tract and progresses to systemic infection in laboratory mice. The complement system is an important part of the host immune response to viral infection. It is not clear the role of the classical complement pathway in MHV infection. Objectives: The purpose of this study was to determine the importance of the classical pathway in coronavirus pathogenesis by comparing C1qa KO mice and wild-type mice. Methods: We generated a C1qa KO mouse using CRISPR/Cas9 technology and compared the susceptibility to MHV A59 infection between C1qa KO and wild-type mice. Histopathological and immunohistochemical changes, viral loads, and chemokine expressions in both mice were measured. Results: MHV A59-infected C1qa KO mice showed severe histopathological changes, such as hepatocellular necrosis and interstitial pneumonia, compared to MHV A59-infected wild-type mice. Virus copy numbers in the olfactory bulb, liver, and lungs of C1qa KO mice were significantly higher than those of wild-type mice. The increase in viral copy numbers in C1qa KO mice was consistent with the histopathologic changes in organs. These results indicate that C1qa deficiency enhances susceptibility to MHV A59 systemic infection in mice. In addition, this enhanced susceptibility effect is associated with dramatic elevations in spleen IFN-γ, MIP-1 α, and MCP-1 in C1qa KO mice. Conclusions: These data suggest that C1qa deficiency enhances susceptibility to MHV A59 systemic infection, and activation of the classical complement pathway may be important for protecting the host against MHV A59 infection.

Corbicula fluminea (Bivalvia: Corbiculidae): a possible second molluscan intermediate host of Echinostoma cinetorchis (Trematoda: Echinostomatidae) in Korea

  • Chung, Pyung-Rim;Jung, Young-Hun;Park, Yun-Kyu;Hwang, Myung-Gi;Soh, Chin-Tack
    • Parasites, Hosts and Diseases
    • /
    • v.39 no.4
    • /
    • pp.329-332
    • /
    • 2001
  • More than 1,500 clams of Corbicula fluminea, the most favorable food source of freshwater bivalves in Korea, were collected from 5 localities to examine cercarial and metacercarial infection with Echinostoma cinetorchis. Although 3 clams infected with suspicious E. cinetorchis metacercariae out of 200 specimens collected at Kangjin, Chollanam-do were detected, no cercarial and metacercarial infections with E. cinetorchis were observed in field-collected Corbicula specimens. In the susceptibility experiments with laboratory-reared clams, those infected with miracidia of E. cinetorchis did not release their cercariae up to 60 days after infection. To confirm the identity of second intermediate host of E. cinetorchis experimentally, a total of 30 clams were exposed to the cercariae from Segmentina hemisphaerula that had been infected with miracidia of E. cinetorchis. The clams were susceptible to cercariae of E. cinetorchis with an infection rate of 93.3%. Metacercariae from clams taken more than 7 days after cercarial exposure were fed to rats (S/D strain), and adult worms of E. cinetorchis, characterized by 37-38 collar spines on the head crown, were recovered from the ileocecal regions. This is the first report of C. fluminea as a possible second intermediate host of E. cinetorchis.

  • PDF

Classifying Host Susceptibility Using Porcine Circovirus Type 2 Viral Load and Antibody Titer (돼지 써코바이러스 2형 감염량과 항체가를 이용한 자돈의 저항성군 선발법)

  • Lim, Kyu-Sang;Lee, Eun-A;Lee, Kyung-Tai;Chun, Taehoon;Hong, Ki-Chang;Kim, Jun-Mo
    • Journal of Life Science
    • /
    • v.27 no.3
    • /
    • pp.283-288
    • /
    • 2017
  • Porcine circovirus type 2 (PCV2) is a notorious and ubiquitous virus in the swine industry. The susceptibility of the host to PCV2 infection is considered to be one factor associated with the dynamics of PCV2. The objective of this study was to verify the criteria for host susceptibility to PCV2, using blood parameters of post-weaned pigs naturally infected with the virus. The PCV2 DNA viral load, antibody titer, and leukopenia characteristics were measured in the serum extracted from the pigs at the 10th week. We classified the pigs into high (>5.0), intermediate (3.0 to 5.0), and low (<3.0) groups on the basis of the PCV2 viral load (log copies/ml), or as positive (${\leq}0.50$) and negative (>0.50) groups on the basis of antibody titer (sample-to-negative corrected ratio). Moreover, using these two categorized parameters, we suggested the criteria for classification into the susceptible and resistant groups. Statistical analyses revealed that pigs in the susceptible group had a significantly higher viral load (p<0.001) and negative antibody titer (p<0.001), as well as significantly lower leukocyte counts (p=0.018) and lower amounts of several leukocyte components (p<0.05), than pigs in the resistant group. We concluded that the susceptible group could be considered to have PCV2-induced leukopenia. Therefore, we suggest that the combined classifications of viral loads and anti-PCV2 antibodies can be used to determine PCV2-induced leukopenia in the subclinical PCV2 infection of post-weaned pig populations.