• 제목/요약/키워드: host specific toxins

검색결과 5건 처리시간 0.015초

Analysis of Genetic Relatedness in Alternaria species Producing Host Specific Toxins by PCR Polymorphism

  • Kang, Hee-Wan;Lee, Byung-Ryun;Yu, Seung-Hun
    • The Plant Pathology Journal
    • /
    • 제19권5호
    • /
    • pp.221-226
    • /
    • 2003
  • Twenty universal rice primers (URPs) were used to detect PCR polymorphisms in 25 isolates of six different Alternaria species producing host specific toxins (HST). Eight URPs could be used to reveal PCR polymorphisms of Alternaria isolates at the intra- and inter-species levels. Specific URP-PCR polymorphic bands that are different from those of the other Alternaria spp. were observed on A. gaisen and A. longipes isolates. Unweighted pair-group method with arithmetic mean (UPGMA) cluster analysis using 94 URP polymorphic bands revealed three clustered groups (A. gaisen group, A. mati complex group, and A. logipes group).

At Death's Door: Alternaria Pathogenicity Mechanisms

  • Lawrence, Christopher B.;Mitchell, Thomas K.;Craven, Kelly D.;Cho, Yang-Rae;Cramer, Robert A.;Kim, Kwang-Hyung
    • The Plant Pathology Journal
    • /
    • 제24권2호
    • /
    • pp.101-111
    • /
    • 2008
  • The fungal genus Alternaria is comprised of many saprophytic and endophytic species, but is most well known as containing many notoriously destructive plant pathogens. There are over 4,000 Alternaria/host associations recorded in the USDA Fungal Host Index ranking the genus 10th among nearly 2,000 fungal genera based on the total number of host records. While few Alternaria species appear to have a sexual stage to their life cycles, the majority lack sexuality altogether. Many pathogenic species of Alternaria are prolific toxin producers, which facilitates their necrotrophic lifestyle. Necrotrophs must kill host cells prior to colonization, and thus these toxins are secreted to facilitate host cell death often by triggering genetically programmed apoptotic pathways or by directly causing cell damage resulting in necrosis. While many species of Alternaria produce toxins with rather broad host ranges, a closely-related group of agronomically important Alternaria species produce selective toxins with a very narrow range often to the cultivar level. Genes that code for and direct the biosynthesis of these host-specific toxins for the Alternaria alternata sensu lato lineages are often contained on small, mostly conditionally dispensable, chromosomes. Besides the role of toxins in Alternaria pathogenesis, relatively few genes and/or gene products have been identified that contribute to or are required for pathogenicity. Recently, the completion of the A. brassicicola genome sequencing project has facilitated the examination of a substantial subset of genes for their role in pathogenicity. In this review, we will highlight the role of toxins in Alternaria pathogenesis and the use of A. brassicicola as a model representative for basic virulence studies for the genus as a whole. The current status of these research efforts will be discussed.

Effects of Light on Production of Toxins by Helminthosporium victoriae and H. carbonum

  • Cho Eui Kyoo;Scheffer Robert P.
    • 한국응용곤충학회지
    • /
    • 제14권2호
    • /
    • pp.47-52
    • /
    • 1975
  • Helminthosporium vicotoriae and H. carbonum were grown under fluorescent plus incandescent lights, or in darkness, with several different temperature regimes. There was little or no effect of light on toxin production by H. victoriae. Light-grown cultures of H. carbonum had significantly higher titres of host-specific toxin than did dark-grown cultures. Light had no significant effect on growth of either fungus. Maximum titres of host-specific toxins from both fungi were evident at the time maximum growth was reached. Minimum pH values in Fries modified medium occurred at the time of, or slightly before maximum level of toxin was reached.

  • PDF

유우유방의 유방염에 대한 자연방어기전 (Immunophysiological Defense Mechanism of the Bovine Udder on Mastitis A Review)

  • 한홍율
    • 한국임상수의학회지
    • /
    • 제3권1호
    • /
    • pp.277-298
    • /
    • 1986
  • This paper reviews the mechanisms effecting host defense in the mammary gland and assesses their possible in preventing of bovine mastitis. The streak canal is the first line of defense against invading mastitis pathogens, providing a physical barrier and antibacterial substances. The milk leukocytes are a second defense line by ingesting pathogens breached the streak canal by multiplication, physical passage, and propulsion during milking. Leukocytosis in milk and enhancement of the phagocytic defense machanisms of the udder were accomplished by inserting intramammary devices. Milk antibodies serum derived and synthesized in mamma tissue aggregate and opsonise bacteria, agglutinate and neutralise toxins, and inhibit. binding of bacteria to epitherial surfaces. Vaccination generally has been unsuccessful because protection is not absolute, but immunization is useful in controlling specific pathogens. Immunostimulant to enhance locally the protective nature of antibody-producing plasma cells concentrated in internal teat end tissue may be effective in reducing the occurrence of infection, but ineffective in preventing intramammary infections.

  • PDF