• 제목/요약/키워드: host cell death

검색결과 75건 처리시간 0.031초

Role of HIV Vpr as a Regulator of Apoptosis and an Effector on Bystander Cells

  • Moon, Ho Suck;Yang, Joo-Sung
    • Molecules and Cells
    • /
    • 제21권1호
    • /
    • pp.7-20
    • /
    • 2006
  • The major event in human immunodeficiency virus type 1 (HIV-1) infection is the death of many cells related to host immune response. The demise of these cells is normally explained by cell suicide mechanism, apoptosis. Interestingly, the decrease in the number of immune cells, such as non-CD4+ cells as well as CD4+ T cells, in HIV infection usually occurs in uninfected bystander cells, not in directly infected cells. It has, therefore, been suggested that several soluble factors, including viral protein R (Vpr), are released from the infected cells and induce the death of bystander cells. Some studies show that Vpr interacts directly with adenine nucleotide translocator (ANT) to induce mitochondrial membrane permeabilization (MMP). The MMP results in release of some apoptogenic factors such as cytochrome-c (cyt-c) and apoptosis-inducing factor (AIF). Vpr also has indirect effect on mitochondria through enhancing the level of caspase-9 transcription and suppressing nuclear factor-kappa B (NF-${\kappa}B$). The involvement of p53 in Vpr-induced apoptosis remains to be studied. On the other hand, low level of Vpr expression has anti-apoptotic effect, whereas it's high level of expression induces apoptosis. Extracellular Vpr also exhibits cytotoxicity to uninfected bystander cells through apoptotic or necrotic mechanism. The facts that Vpr has cytotoxic effect on both infected cells and bystander cells, and that it exhibits both proand anti-apoptotic activity may explain its role in viral survival and disease progression.

Histological and Ultrastructural Study of Susceptible and Age-related Resistance Responses of Pepper Leaves to Colletotrichum cocodes Infection

  • Hong, Jeum-Kyu;Lee, Yeon-Kyeong;Jeun, Yong-Chull;Hwang, Byung-Kook
    • The Plant Pathology Journal
    • /
    • 제17권3호
    • /
    • pp.128-140
    • /
    • 2001
  • Infection of pepper leaves by Colletotrichum cocodes at the two- and eight-leaf stages caused susceptible and resistant lesions 96 h after inoculation, respectively. At the two-leaf stage, progressive symptom development occurred on the infected leaves. In contrast, localized necrotic spots were characteristic symptoms at the eight-leaf stage. Infected leaves at the two-leaf stage exhibited cell death accompanied by the accumulation of autofluorescent compounds. At the eight-leaf stage, pepper leaves infected by the anthracnose fungus displayed localized autofluorescence from the symptoms. Infection of pepper leaves by C. cocodes at the two-leaf stage resulted in its rapidand massive colonization of all the leaf tissues including the vascular tissue, together with cytoplasmic collapse, distortion of chloroplasts, and disruption of host cell walls. However, penetration of C. cocodes was very limited in the older leaf tissues of pepper plants at the eight-leaf stage. Fungal hyphae grew only in the intramural spaces of the epidermal cell walls at this stage. Occlusion of amorphous material in xylem vessels, aggregation of fibrillar material in inter-cellular spaces, and deposition of protein bodies were found as resistance responses to C. cocodes.

  • PDF

Genome-Wide Analysis of Hypoxia-Responsive Genes in the Rice Blast Fungus

  • Choi, Jaehyuk;Chung, Hyunjung;Lee, Gir-Won;Koh, Sun-Ki;Chae, Suhn-Kee;Lee, Yong-Hwan
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2015년도 춘계학술대회 및 임시총회
    • /
    • pp.13-13
    • /
    • 2015
  • Rice blast fungus, Magnaporthe oryzae, is the most destructive pathogen of rice in the world. This fungus has a biotrophic phase early in infection and switches to a necrotrophic lifestyle after host cell death. During the biotrophic phase, the fungus competes with host for nutrients and oxygen. Continuous uptake of oxygen is essential for successful establishment of blast disease of this pathogen. Here, we report transcriptional responses of the fungus to oxygen limitation. Transcriptome analysis using RNA-Seq identified 1,047 up-regulated genes in response to hypoxia. Those genes were involved in mycelial development, sterol biosynthesis, and metal ion transport based on hierarchical GO terms and well-conserved among three different fungal species. In addition, null mutants of three hypoxia-responsive genes were generated and tested for their roles on fungal development and pathogenicity. The mutants for a sterol regulatory element-binding protein gene, MoSRE1, and C4 methyl sterol oxidase gene, ERG25, exhibited increased sensitivity to hypoxia-mimetic agent, increased conidiation, and delayed invasive growth within host cells, suggesting important roles in fungal development. However, such defects did not cause any significant decrease in disease severity. The other null mutant for alcohol dehydrogenase gene, MoADH1, showed no defect in the hypoxia-mimic condition and fungal development. Taken together, this comprehensive transcriptional profiling in response to a hypoxia condition with experimental validations would provide new insights on fungal development and pathogenicity in plant pathogenic fungi.

  • PDF

Subcellular Responses in Nonhost Plant Infected with Pathogenic and Non-pathogenic Strains of Xanthomonas axonopodis pv. glycines

  • Jeong, Yong-Ho;Kim, Jung-Gun;Chang, Sung-Pae;Hwang, In-Gyu;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • 제18권3호
    • /
    • pp.115-120
    • /
    • 2002
  • Xanthomonas axonopodis pv. glycines, the causal agent of bacterial pustule of soybean, induces hypersensitive response (HR) in a non-host plant, hot pepper (Capsicum annuum). A wild-type strain (8ra) and its non-patho-genic mutant (8-13) of X. axonopodis pv. glycines were inoculated into the pepper leaf tissues and their subcellular responses to the bacterial infections were examined by electron microscopy. Intrastructural changes related to HR were found in the leaf tissues infected with 8ra from 8 h after inoculation, characterized by separation of plasmalemma from the cell wall, formation of small vacuoles and vesicles, formation of cell wall apposition, and cellular necrosis. No such responses were observed in the tissues infected with the mutant. In 8ra, the bacterial cells were attached to the cell walls, with the cell wall material dissolved into and appearing to encapsulate the bacterial cells. The bacterial cells later became entirely embedded in the cell wall material. On the other hand, in 8-13, the bacterial cells were usually not attached tightly to the plant cell wall, and no or poor encapsulation of the bacteria by the wall material occurred, although these were encircled by rather loose wall materials at the later stages.

Rpi-blb2 Gene-Mediated Late Blight Resistance in Plants

  • Oh, Sang-Keun
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2015년도 추계학술대회 및 정기총회
    • /
    • pp.26-26
    • /
    • 2015
  • Phytophthora infestans is the causal agent of potato and tomato late blight, one of the most devastating plant diseases. P. infestans secretes effector proteins that are both modulators and targets of host plant immunity. Among these are the so-called RXLR effectors that function inside plant cells and are characterized by a conserved motif following the N-terminal signal peptide. In contrast, the effector activity is encoded by the C terminal region that follows the RXLR domain. Recently, I performed in planta functional profiling of different RXLR effector alleles. These genes were amplified from a variety of P. infestans isolates and cloned into a Potato virus X (PVX) vector for transient in planta expression. I assayed for R-gene specific induction of hypersensitive cell death. The findings included the discovery of new effector with avirulence activity towards the Solanum bulbocastanum Rpi-blb2 resistance gene. The Rpi-blb2 encodes a protein with a putative CC-NBS-LRR (a coiled-coil-nucleotide binding site and leucine-rich repeat) motif that confers Phytophthora late blight disease resistance. We examined the components required for Rpi-blb2-mediated resistance to P. infestans in Nicotiana benthamiana. Virus-induced gene silencing was used to repress candidate genes in N. benthamiana and to assay against P. infestans infections. NbSGT1 was required for disease resistance to P. infestans and hypersensitive responses (HRs) triggered by co-expression of AVRblb2 and Rpi-blb2 in N. benthamiana. RAR1 and HSP90 did not affect disease resistance or HRs in Rpi-blb2-transgenic plants. To elucidate the role of salicylic acid (SA) in Rpi-blb2-mediated resistance, we analyzed the response of NahG-transgenic plants following P. infestans infection. The increased susceptibility of Rpi-blb2-transgenic plants in the NahG background correlated with reduced SA and SA glucoside levels. Furthermore, Rpi-blb2-mediated HR cell death was associated with $H_2O_2$, but not SA, accumulation. SA affects basal defense and Rpi-blb2-mediated resistance against P. infestans. These findings provide evidence about the roles of SGT1 and SA signaling in Rpi-blb2-mediated resistance against P. infestans.

  • PDF

Damage to the Cytoplasmic Membrane and Cell Death Caused by Lycopene in Candida albicans

  • Sung, Woo-Sang;Lee, In-Seon;Lee, Dong-Gun
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권11호
    • /
    • pp.1797-1804
    • /
    • 2007
  • Lycopene, an acyclic carotenoid found in tomatoes (Lycopersicon esculentum) and a number off fruits, has shown various biological properties, but its antifungal effects remain poorly understood. The current study investigated the antifungal activity of lycopene and its mode of action. Lycopene showed potent antifungal effects toward pathogenic fungi, tested in an energy-independent manner, with low hemolytic effects against human erythrocytes. To confirm the antifungal effects of lycopene, its effects on the dimorphism of Candida albicans induced by fetal bovine serum (FBS), which plays a key role in the pathogenesis of a host invasion, were investigated. The results showed that lycopene exerted potent antifungal activity on the serum-induced mycelia of C. albicans. To understand the antifungal mode of action of lycopene, the action of lycopene against fungal cell membranes was examined by FACScan analysis and glucose and trehalose-release test. The results indicated that lycopene caused significant membrane damage and inhibited the normal budding process, resulting from the destruction of membrane integrity. The present study indicates that lycopene has considerable antifungal activity, deserving further investigation for clinical applications.

마렉병 바이러스 감염과 병원성 발현 기전 (Infection and Pathogenesis Mechanisms of Marek's Disease Virus)

  • 장형관;박영명;차세연;박종범
    • 한국가금학회지
    • /
    • 제35권1호
    • /
    • pp.39-55
    • /
    • 2008
  • Like the other herpesviruses, the virion of MDV consists of an envelope, which surrounds an amorphous tegument. Within the tegument, and icosahedral capsid encloses a linear double-stranded DNA core. Although the genome structure of MDV indicates that it is an ${\alpha}-herpesvirus$ like herpes simplex and varicella-zoster viruses, biological properties indicate MDV is more akin to the ${\gamma}-herpesvirus$ group, which includes Epstein-Barr and Kaposi's sarcoma herpesviruses. These herpesviruses replicate lytically in lymphocytes, epithelial and fibroblastic cells, and persist in lymphoblastoid cells. MDV has a complex life cycle and uses two means of replication, productive and non-productive, to exist and propagate. The method of reproduction changes according to a defined pattern depending on changes in virus-cell interactions at different stages of the disease, and in different tissues. Productive (lytic) interactions involve active invasion and take-over of the host cell, resulting in the production of infectious progeny virions. However, some herpesviruses, including MDV, can also establish a non-productive (abortive) infection in certain cell types, resulting in production of cell-associated progeny virus. Non-productive interactions represent persistent infection, in which the viral genome is present but gene expression is limited, there is no structural or regulatory gene translation, no replication, no release of progeny virions and no cell death. Reactivation of the virus is rare, and usually the infectious virus can be re-isolated only after cultivation in vitro. MDV establishes latency in lymphoid cells, some of which are subsequently transformed. In this review article, recent knowledges of the pathogenesis mechanisms followed by MDV infection to sensitive cells and chickens are discussed precisely.

Suppressors for Human Epidermal Growth Factor Receptor 2/4 (HER2/4): A New Family of Anti-Toxoplasmic Agents in ARPE-19 Cells

  • Kim, Yeong Hoon;Bhatt, Lokraj;Ahn, Hye-Jin;Yang, Zhaoshou;Lee, Won-Kyu;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • 제55권5호
    • /
    • pp.491-503
    • /
    • 2017
  • The effects of tyrosine kinase inhibitors (TKIs) were evaluated on growth inhibition of intracellular Toxoplasma gondii in host ARPE-19 cells. The number of tachyzoites per parasitophorous vacuolar membrane (PVM) was counted after treatment with TKIs. T. gondii protein expression was assessed by western blot. Immunofluorescence assay was performed using Programmed Cell Death 4 (PDCD4) and T. gondii GRA3 antibodies. The TKIs were divided into 3 groups; non-epidermal growth factor receptor (non-EGFR), anti-human EGFR 2 (anti-HER2), and anti-HER2/4 TKIs, respectively. Group I TKIs (nintedanib, AZD9291, and sunitinib) were unable to inhibit proliferation without destroying host cells. Group II TKIs (lapatinib, gefitinib, erlotinib, and AG1478) inhibited proliferation up to 98% equivalent to control pyrimethamine ($5{\mu}M$) at $20{\mu}M$ and higher, without affecting host cells. Group III TKIs (neratinib, dacomitinib, afatinib, and pelitinib) inhibited proliferation up to 98% equivalent to pyrimethamine at $1-5{\mu}M$, but host cells were destroyed at $10-20{\mu}M$. In Group I, TgHSP90 and SAG1 inhibitions were weak, and GRA3 expression was moderately inhibited. In Group II, TgHSP90 and SAG1 expressions seemed to be slightly enhanced, while GRA3 showed none to mild inhibition; however, AG1478 inhibited all proteins moderately. Protein expression was blocked in Group III, comparable to pyrimethamine. PDCD4 and GRA3 were well localized inside the nuclei in Group I, mildly disrupted in Group II, and were completely disrupted in Group III. This study suggests the possibility of a vital T. gondii TK having potential HER2/4 properties, thus anti-HER2/4 TKIs may inhibit intracellular parasite proliferation with minimal adverse effects on host cells.

아마인 추출물의 AKT 신호 조절을 통한 콕사키바이러스 증식억제 (Extract of Linum usitatissimum L. inhibits Coxsackievirus B3 Replication through AKT Signal Modulation)

  • 신하현;문성진;임병관;김진희
    • 생약학회지
    • /
    • 제49권4호
    • /
    • pp.291-297
    • /
    • 2018
  • Coxsackievirus B3 (CVB3) is a very well-known causative agent for viral myocarditis and meningitis in human. However, the effective vaccine and therapeutic drug are not developed yet. CVB3 infection activates host cell AKT signaling. Inhibition of AKT signaling pathway may attenuate CVB3 replication and prevent CVB3-mediate viral myocarditis. In this study, we determined antiviral effect of the selected natural plant extract to develop a therapeutic drug for CVB3 treatment. We screened several chemically extracted natural compounds by using HeLa cell-based cell survival assay. Among them, Linum usitatissimum L. extract was selected for antiviral drug candidate. L. usitatissimum extract significantly decreased CVB3 replication and cell death in CVB3 infected HeLa cells with no cytotoxicity. CVB3 protease 2A induced eIF4G1 cleavage and viral capsid protein VP1 production were dramatically decreased by L. usitatissimum extract treatment. In addition, virus positive and negative strand genome amplification were significantly decreased by 1 mg/ml L. usitatissimum extract treatment. Especially, L. usitatissimum extract was associated with inhibition of AKT signal and maintain mTOR activity. In contrast, Atg12 and LC3 expression were not changed by L. usitatissimum extract treatment. In this study, the potential AKT signal inhibitor, L. usitatissimum extract, was significantly inhibited viral genome replication and protein production by inhibition of AKT signal. These results suggested that L. usitatissimum extract is a novel therapeutic agent for treatment of CVB3-mediated diseases.

In Vitro Generation of Luminal Vasculature in Liver Organoids: From Basic Vascular Biology to Vascularized Hepatic Organoids

  • Hyo Jin Kim;Gyeongmin Kim;Kyun Yoo Chi;Jong-Hoon Kim
    • International Journal of Stem Cells
    • /
    • 제16권1호
    • /
    • pp.1-15
    • /
    • 2023
  • Liver organoids have gained much attention in recent years for their potential applications to liver disease modeling and pharmacologic drug screening. Liver organoids produced in vitro reflect some aspects of the in vivo physiological and pathological conditions of the liver. However, the generation of liver organoids with perfusable luminal vasculature remains a major challenge, hindering precise and effective modeling of liver diseases. Furthermore, vascularization is required for large organoids or assembloids to closely mimic the complexity of tissue architecture without cell death in the core region. A few studies have successfully generated liver organoids with endothelial cell networks, but most of these vascular networks produced luminal structures after being transplanted into tissues of host animals. Therefore, formation of luminal vasculature is an unmet need to overcome the limitation of liver organoids as an in vitro model investigating different acute and chronic liver diseases. Here, we provide an overview of the unique features of hepatic vasculature under pathophysiological conditions and summarize the biochemical and biophysical cues that drive vasculogenesis and angiogenesis in vitro. We also highlight recent progress in generating vascularized liver organoids in vitro and discuss potential strategies that may enable the generation of perfusable luminal vasculature in liver organoids.