• Title/Summary/Keyword: hornblende

Search Result 162, Processing Time 0.024 seconds

Petrology of the Igneous Rocks in the Goseong area, Gyeongsang Basin II. Trace Element Geochemistry and Rb-Sr Radiometric Age (경상분지 고성지역의 화성암류에 대한 암석학적 연구 II. 미량원소 지구화학과 Rb-Sr 방사성 연대)

  • Jwa, Yong-Joo
    • Economic and Environmental Geology
    • /
    • v.31 no.6
    • /
    • pp.473-483
    • /
    • 1998
  • The igneous rocks in the Goseong area are composed of the volcanic rocks (andesitic lapilli tuff and rhyodacite), Bulgugsa granites (Hornblende-biotite granite and two pyroxene granite) and intrusive andesites. In the variation diagrams of the trace and rare earth element contents and elemental ratios as well as the REE patterns, the three igneous rock types show different variational trends and patterns. The geochemical features represent that the igneous rocks in the area were formed from three different magmatic pulses. Two independently carried out Rb-Sr isotope experiments for the Goseong granites show that the whole rock ages and Sr initial ratios of the granites are $66.4{\pm}6.2Ma$, $0.70517{\pm}22(2{\sigma})$ and $71.3{\pm}6.8Ma$, $0.70506{\pm}18(2{\sigma})$, respectively. These results suggest that the granites magma originated from the lower crustal materials of igneous origin intruded into the area during the late Cretaceous period. Masan hornblende-biotite granite emplaced at the vicinity of the Goseong area is very similar to the Goseong granite in its mineral compositions, major, trace and rare earth element contents and patterns. The intruding age (100 Ma) of the Masan granite is order than that of the Geseong granite, however. The similarity of the geochemical natures but the contrast of the intruding ages between the Masan and Goseong granites possibly indicate that the magma generation from the same source materials occurred at a temporal interval of ca. 30 Ma.

  • PDF

Evolution Trends of Biotite and Hornblende in Granitic Rocks from Yonghae-Yongdok Area, Northeastern Gyeongsang Basin, Korea (경상분지(慶尙盆地) 북동부(北東部) 영해(盈海)·영덕일대(盈德一帶)의 화강암질암(花崗岩質岩)의 흑운모(黑雲母)와 각섬석(角閃石)의 진화경로(進化經路))

  • Lee, Yoon-Jong;Kim, Joong-Wook;Chung, Won-Woo
    • Economic and Environmental Geology
    • /
    • v.26 no.3
    • /
    • pp.349-361
    • /
    • 1993
  • The granitic rocks in the study area are divided into the schist and gneiss complex, Yongdok pluton, Yonghae pluton and Onjong pluton by their texture, fabric and relationship to the adjacent rocks in the field, Schist and gneiss complex occurs as xenolith or roof pendant in the Yongdok, Yonghae and Onjong plutons. The Yongdok pluton occurs in association with pegmatite and aplite in many places of its pluton. In the field it is obviously clarified that the Yongdok pluton is unconformably overlay by the Cretaceous sedimentary rocks. The Yonghae and Onjong plutons are gradationally changed each other, and these plutons truncate both the Yongdok pluton and the Cretaceous sedimentary rocks. Petrographically, the Yongdok pluton consists of granodiorite and granite with minor quartz monzonite. The Yonghae pluton is composed of diorite, quartz diorite, tonalite, and granodiorite. The Onjong pluton also ranges granodiorite to granite. Both the Yongdok and Yonghae-Onjong plutons are different in the constituent minerals, such as alkali feld~par, myrmekite, mica, sphene and mafic minerals. This suggests that each pluton might have been different crystallization sequence and characteristically different gological history during the crystallization period. Iron/magnesium ratio in biotite and hornblende from both the Yongdok and Yonghae-Onjong plutons gradually decrease as the differentiation index increasing in the whole rock. The decrease of this ratio strongly depend on the increase of opaque mineral contents. From the results of chemistry in the whole rocks and some mafic minerals, it is suggest that the granite plutons of the two different geological ages would have been suffered the environment of high oxygen fugacity in the process of magmatic emplacement and during the crystallization period.

  • PDF

Spatial Compositional Variations and their Origins in the Buseok Pluton, Yeongju Batholith (영주저반의 부석심성암체 내에서 공간적 조성변화와 그 성인)

  • 황상구
    • Economic and Environmental Geology
    • /
    • v.33 no.2
    • /
    • pp.147-163
    • /
    • 2000
  • The Buseok pluton in the Yeongju Batholith is a comagmatic plutonic rocks which haveconcentrically compositional zoning. The lithofacies of the Buseok pluton comprise hornblende biotite tonalite in the southern part of the pluton, porphyritic and equigranular biotite granodiorite in the northern part and biotite granite in the north-central part. The compositional variations change gradually with continuity both within and between the lithofacies. The concentrically zoned pattern is relatively mafic rocks composed of high-temperature mineral assemblages in margin of the southern part, passing inward and northward gradually to more felsic rock in core of the north-central part. Changes in the textures and microstructures, as well as in the mineral content, take place between rock types of the plutons. Darker colored, generally coarse-grained, well foliated tonalite pass inward to light colored, coarse-grained, poorly foliated granodiorite, and finally give way to lighter colored, medium-grained, nearly nonfoliated granite. The foliation are best developed in the marginal part of the tonalite. Here, the regional myolitic foliation in the tonalite is steep northward and parallels to its southeastern contact with the country rock, but the magmatic foliation from disc-shaped mafic microgranitoid enclaves is subvertical and parallels the contacts with the country rock. As the tonalite approaches biotite granite in composition, the foliation is indistinct. Modal and chemical data for the pluton show quantitative compositional variation from the margin of the southern part to the core of the north-central part. Quartz and K-feldspar increase toward the core of the pluton, whereas hornblende, biotite and color index decrease. /Abundances of $SiO_2$and $K_2O$$_2$O increase toward the core according to the variation in quartz and K-feldspar, whereas those of MnO, CaO, $TiO_2$, $Fe_2O_3$, MgO and $P_2O_5$ decrease corresponding to the variation in mafic and accessaries. The compositional zonation resulted from fractional crystallization involving downward settling of earlier crystals, accompanied by upward movement of melt and volatiles, and followed by accessary marginal accretion of crystalline material in the magma to the marginal part. Although a little crustal contamination by the wall rock is recognized from the isotope data, the contamination is not only dominated over but also appropriate for forming the compositional variation in the pluton.

  • PDF

A Geochemical Study of Gold Skarn Deposits at the Sangdong Mine, Korea (상동광산 금스카른광상의 지구화학적 연구)

  • Lee, Bu Kyung;John, Yong Won
    • Economic and Environmental Geology
    • /
    • v.31 no.4
    • /
    • pp.277-290
    • /
    • 1998
  • The purpose of this research is to investigate the dispersion pattern of gold during skarnization and genesis of gold mineralization in the Sangdong skarn deposits. The Sangdong scheelite orebodies are embedded in the Cambrian Pungchon Limestone and limestone interbedded in the Myobong Slate of the Cambrian age. The tungsten deposits are classified as the Hangingwall Orebody, the Main Orebody and the Footwall Orebody as their stratigraphic locations. Recently, the Sangdong granite of the Cretaceous age (85 Ma) were found by underground exploratory drillings below the orebodies. In geochemisty, the W, Mo, Bi and F concentrations in the granite are significantly higher than those in the Cretaceous granitoids in southern Korea. Highest gold contents are associated with quartz-hornblende skarn in the Main Orebody and pyroxene-hornblende skarn in the Hangingwall Orebody. Also Au contents are closely related to Bi contents. This could be inferred that Au skarns formed from solutions under reduced environment at a temperature of $270^{\circ}C$. According to the multiple regression analysis, the variation of Au contents in the Main Orebody can be explained (87.5%) by Ag, As, Bi, Sb, Pb, Cu. Judging from the mineralogical, chemical and isotope studies, the genetic model of the deposits can be suggested as follows. The primitive Sangdong magma was enriched in W, Mo, Au, Bi and volatiles (metal-carriers such as $H_2O$, $CO_2$ and F). During the upward movement of hydrothermal ore solution, the temperature was decreased, and W deposits were formed at limestone (in the Myobong Slate and Pungchon Limestone). In addition, meteoric water influx gave rise to the retrogressive alterations and maximum solubility of gold, and consequently higher grade of Au mineralization was deposited.

  • PDF

Petrology of the Cretaceous volcanic rocks in Pusan ares, Korea (부산일원에 분포하는 백악기 화산암류의 암석학적 연구(I))

  • 김진섭;윤성효
    • The Journal of the Petrological Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.156-166
    • /
    • 1993
  • The volcanic stratigraphy and geochemistry of the Cretaceous volcanic rocks in the southern part of the Pusan showed that the volcanic rocks of the study area consist of alternating pyroclastic rocks and andesitic lavas, apparently constituting a thick volcanic sequence of a stratovolcano. The andesitic rocks contain augite, plagioclase, and hornblende as phenocrysts. Matrix minerals are augite, magnetite, hornblende, apatite. Mafic minerals, such as chlorite, epidote, sericite, and iron oxides occur as alteration products. Dacitic volcanic breccia and rhyolitic welded ash-flow tuff locally overlie the andesitic rocks. The rocks reported in the previous studies as andesitic breccia and andesite plot in the field of basalt, basaltic andesite, andesite, dacite and rhyolite, based on their chemical compositions. The volcanic rocks of the study area belong to the calc-alkaline series, and the andesitic rocks which are predominant in the area plot to the field of orogenic andesite.

  • PDF

Petrological Study on the Jecheon granite mass (제천(提川) 화강암체(花崗岩體)에 대(對)한 암석학적(岩石學的) 연구(硏究))

  • Kim, Yong Jun
    • Economic and Environmental Geology
    • /
    • v.12 no.3
    • /
    • pp.115-126
    • /
    • 1979
  • The Jecheon granite mass has turtle-shape exposure of about $190km^2$ at vicinity of Jecheon-eup, and is elongated in the direction of NEE-SWW. It discordantly intrudes the Bakdalryong metamorphic rocks and the great limestone series(Samtaesan and Hungwolri formation) which belong to the pre-Cambrian and Ordovician, respectively. The mass is composed of five facies of different grain size; texture and charecteristic minerals. The five facies are (1) coarse grained biotite granodiorite, (2) fine grained hornblende biotite granodiorite, (3) coarse grained pink feldspar granodiorite (4) leucogranite, and (5) porphyritic biotite granite. The mutual relationship between each facies is intrusion in (1)-(2) and (2)-(3), but unknown in (3)-(4) and (4)-(5). 22 modal analyses and and 10 chemical analyses on more than a hundred of representative samples taken from the mass are listed as tables. Triangular plot of modal and normative Q-Kf-Pl of this mass show a continuous differentiation products from certain common magma by change of chemical composition and anorthite contents in plagioclase. The metamorphic facies of contact aureole in surrounding rocks adjacent to the granite body are corresponded to hornblende hornfels facies with mineral assemblages of wollastonite-diopside-calcite in calcareous rocks, and of quartz-biotite-muscovite-cordierite in argillaceous rocks. Variation of silica versus oxides of major elements shows that the mass is similar to the trend of Daly's average basalt-andesite-dacite-rhyolite which shows the trend of the fractional crystallization of magma, and is equivalent to the calc-alkali rock series by Peacock. AMF diagram shows that Jecheon granite mass is equivalent to normal diffentiation products such as skaergaard intrusion. The above evidences suggest that the Jecohon granite mass is normal differentiation products formed by fractional crystallization under relatively slow cooling condition.

  • PDF

Wallrock Alteration and Primary Dispersion of Elements in the Vicinity of the Mugeug Gold-bearing Quartz Veins (무극 함금석영맥광상 주변모암에서의 모암변질과 원소들의 일차분산)

  • Hwang, In Ho;Chon, Hyo Taek
    • Economic and Environmental Geology
    • /
    • v.27 no.4
    • /
    • pp.387-396
    • /
    • 1994
  • Mineralogical and geochemical studies on gold-bearing quartz veins and wallrock from the Mugeug mine were carried out in order to investigate the variation of mineralogical composition and the geochemical behavior of elements with distance from the gold-bearing quartz veins. Gold-bearing quartz veins occur in early Cretaceous medium- to coarse-grained biotite granite. The unaltered wallrock is composed mainly of quartz, plagioclase, orthoclase, microcline, biotite and hornblende with accessory minerals of sphene and apatite. Mineralogical changes in altered wallrock around the gold-bearing quartz veins were observed as follows; 1) biotite and hornblende altered into chlorite, and next to sericite, 2) plagioclase, orthoclase and microcline altered into sericite, and 3) calcite and quartz introduced into wallrock. Contents of $K_2O$, Rb, Cs, Au, As and Sb in altered wallrock increase, whereas those of $Na_2O$, CaO, Ba, and Sr decrease with proximity to the gold-bearing quartz veins. The loss on ignition also increases with the increase of alteration mineral. The width of primary dispersion increases in order $Au=SiO_2<As=Cs=Rb<K_2O=Sb$ and $MnO<Na_2O=CaO=Ba<Sr$. The sericitization index, $K_2O/(K_2O+Na_2O)$, is an important indicator to interpret the degree of alteration at the Mugeug mine, which is more than 0.8 in strongly and moderately altered granite, 0.5~0.8 in wea altered granite, and less than 0.5 in unaltered granite. Alteration indices for major and trace elements, and the ratio of Rb/Sr are also useful to discriminate alteration zones.

  • PDF

Preliminary Report on the Geology of Sangdong Scheelite Mine (상동광산(上東鑛山) 지질광상(地質鑛床) 조사보고(調査報告))

  • Kim, Ok Joon;Park, Hi In
    • Economic and Environmental Geology
    • /
    • v.3 no.1
    • /
    • pp.25-34
    • /
    • 1970
  • Very few articles are available on geologic structure and genesis of Sangdong scheelite-deposits in spite of the fact that the mine is one of the leading tungsten producer in the world. Sangdong scheelite deposits, embedded in Myobong slate of Cambrian age at the southem limb of the Hambaek syncline which strikes $N70{\sim}80^{\circ}W$ and dips $15{\sim}30^{\circ}$ northeast, comprise six parallel veins in coincide with the bedding plane of Myobong formation, namely four footwall veins, a main vein, and a hangingwall vein. Four footwall veins are discontinuous and diminish both directions in short distance and were worked at near surface in old time. Hangingwall vein is emplaced in brecciated zone in contact plane of Myobong slate and overlying Pungchon limestone bed of Cambrian age and has not been worked until recent. The main vein, presently working, continues more than 1,500 m in both strike and dip sides and has a thickness varying 3.5 to 5 m. Characteristic is the distinct zonal arrangement of the main vein along strike side which gives a clue to the genesis of the deposits. The zones symmetrically arranged in both sides from center are, in order of center to both margins, muscovite-biotite-quartz zone, biotite-hornblende-quartz zone and garnet-diopside zone. The zones grade into each other with no boundary, and minable part of the vein streches in the former two zones extending roughly 1,000 m in strike side and over 1,100 m in dip side to which mining is underway at present. The quartz in both muscovite-biotite-quartz and biotite-hornblende-quartz zones is not network type of later intrusion, but the primary constituent of the special type of rock that forms the main vein. The minable zone has been enriched several times by numerous quartz veins along post-mineral fractures in the vein which carry scheelite, molybdenite, bismuthinite, fluorite and other sulfide minerals. These quartz veins varying from few centimeter to few tens of centimeter in width are roughly parallel to the main vein although few of them are diagonal, and distributed in rich zones not beyond the vein into both walls and garnet-diopside zone. Ore grade ranges from 1.5~2.5% $WO_3$ in center zone to less than 0.5% in garnet-diopside zone at margin, biotite-hornblende-quartz zone being inbetween in garde. The grade is, in general, proportional to the content of primary quartz. Judging from regional structure in mid-central parts of South Korea, Hambaek syncline was formed by the disturbance at the end of Triassic period with which bedding thrust and accompanied feather cracks in footwall side were created in Myobong slate and brecciated zone in contact plane between Myobong slate and Pungchon limestone. These fractures acted as a pathway of hot solution from interior which was in turn differentiated in situ to form deposit of the main vein with zonal arrangement. The footwall veins were developed along feather cracks accompanied with the main thrust by intrusion of biotite-hornblende-quartz vein and the hangingwall vein in shear zone along contact plane by replacement. The main vein thus formed was enriched at later stage by hydrothermal solutions now represented by quartz veins. The main mineralization and subsequent hydrothermal enrichments had probably taken place in post-Triassic to pre-Cretaceous periods. The veins were slightly displaced by post-mineral faults which cross diagonally the vein. This hypothesis differs from those done by previous workers who postulated that the deposits were formed by pyrometasomatic to contact replacement of the intercalated thin limestone bed in Myobong slate at the end of Cretaceous period.

  • PDF

Resarch on Manufacturing Technology of Red-Burnished Pottery Excavated from Samdeok-ri, Goseong, Korea (고성 삼덕리유적 출토 적색마연토기의 제작 특성 연구)

  • Han, Leehyeon;Kim, Sukyoung;Jin, Hongju;Jang, Sungyoon
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.4
    • /
    • pp.170-187
    • /
    • 2020
  • Dolmens bearing the burial layout and stone coffin tombs of the late Bronze Age were excavated from Samdeok-ri, Goseong, Gyeonsangnsamdo, and grave items such as red-burnished pottery, arrowheads, and stone swords were also discovered. In the case of the red-burnished pottery that was found, it retains a pigment layer with a thickness of about 50 to 160㎛, but with most of the other items, exfoliation and peeling-off of pigment layers can be observed on the surface. The raw materials of the red-burnished pottery contained moderately sorted minerals such as quartz, feldspar, and hornblende, and partly opaque iron oxide minerals were also identified. In particular, the raw materials of the red-burnished pottery from stone coffin tomb #6 were different from those of the other pottery, containing large amounts of hornblende and feldspar. The pottery's red pigment was identified as hematite and showed similar mineral content of raw materials such as fine grained quartz, feldspar, and hornblende. The firing temperature is estimated to have been approximately 900℃, based on their mineral phase. The possibility exists that the raw materials had been collected from the Samdeok-ri area, because diorite and granite diorite with dominant feldspar and hornblende have been identified within 3km of that area. During the pottery manufacturing process, it is estimated that the pigment was painted on the entire surface of the red-burnished pottery after it had been molded and then finished using the abrasion technique. In other words, the red-burnished pottery was made by the process of vessel forming - semi drying - coloring - polishing. The surface and cross-section of the pottery appears differently depending on the concentration of the pigment and the coloring method used after vessels were formed. Most of the excavated pottery features a distinct boundary between pigment and body fabric. However, in the case of pottery in which fine-grained pigments penetrate the body fabric so that layers cannot be distinguished, there is the possibility that the fine-grained pigment layer was applied at a low concentration or immediately after vessel forming. Many cracks can be seen on the surface pigments in thickly painted pottery items, and in many cases, only a small portion of the pigment layers remain due to surface exfoliation and abrasion in the burial environment. It is reported that pottery items may be more easily damaged by abrasion if coated with pigment and polished, so it is believed that the red-burnished pottery of the Samdeok-ri site suffered from weathering in the burial environment. This damage was more extensive in the potsherds that were scattered outside the tomb.

Geochronology and Petrogenesis on the Older Granitic Rocks collected across the Ryeongnam Massif, Korea (영남육괴(嶺南陸塊)에 분포(分布)하는 고기화강암질암(古期花崗巖質岩)의 지질연대(地質年代)와 성인(成因)에 대(對)한 연구(硏究))

  • Kim, Yong Jun
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.151-162
    • /
    • 1986
  • The older granitic rocks of the study area are composed of mainly orthogneiss and foliated granite. These rocks shows mostly mortar or fiaser structure by strong mylonitization and thermal metamorphism during several orogenies. $^{40}Ar-^{39}Ar$ incremental·release ages of these rocks have been determined for 6 hornblende. 7 muscovite and 4 biotite concentrates separated from rocks collected across the Ryeongnam massif. Most $^{40}Ar-^{39}Ar$ age are discordant with Rb-Sr whole rock age of the same area. These ages range from 1998 to 172Ma. This discordant age is interpreted to indicate that samples were in contact with Daebo granite body that was characterized by large and variable $^{40}Ar-^{39}Ar$ ratios. Such ratios most likely resulted from widespread diffusion of the argon liberated from older granitic rocks during several metamorphic overprint. The general trend of the chemical composition of these rocks suggest that most of them are some series of differentiated products by fractional crystallization.

  • PDF