• 제목/요약/키워드: hormone sensitive lipase (HSL)

검색결과 41건 처리시간 0.029초

급식횟수가 체내의 지방축적과 지방조직의 lipase에 미치는 영향 (Influence of Periodicity of Eating on Body Fat Accumulation and Lipases in Rat Adipose Tissue)

  • 박현서
    • Journal of Nutrition and Health
    • /
    • 제10권4호
    • /
    • pp.10-18
    • /
    • 1977
  • Activities of lipoprotein lipase (LPL) and hormone-sensitive lipase (HSL) in adipose tissue, accumulation of carcass fat, and serum triglyceride have been determined in meal-fed (MF) and ad libitum-fed (AD) rats. At each feeding frequency, the animals received diets providing total fat as 15% or 30% of calories and polyunsaturated fatty acids (PUFA) as 2.5% or 11% of calories. The food intake of the MF rats was 75% of that consumed by the AD rats but MF rat utilized their food more efficiently, as evidenced by weight gain per 100 Kcal consumed. Meal feeding, as contrasted to ad libitum feeding, resulted in greater activities of both LPL and HSL. This suggested a higher turnover of fat in the adipose tissue of MF rats. In AD rats, body fat was significantly correlated with LPL and the ratio of LPL/HSL. Meal feeding significantly increased the ratio of LPL/HSL, indicating a greater capacity for energy storage and fat deposition in the MF rat. However, at the limited caloric intake, MF rats failed to realize this potential; there was no significant difference in percentage of body fat at the two feeding frequencies. Body fat deposition was greater in rats fed the 30% fat diet, as compared with the 15% diet, regardless of the rate of food ingestion. This was coupled with a higher ratio of LPL/HSL. The significant correlation of serum triglycerides with body fat and with the ratio of LPL/HSL in AD rats suggests that LPL activity and fat deposition may be controlled by the concentration of circulating triglycerides. Both serum triglycerides and adipose LPL activity were significantly reduced when the diet contained high levels of PUFA. The percentage of body fat was also lower in animals whose intake of PUFA was high.

  • PDF

Antiobesity effects of the water-soluble fraction of the ethanol extract of Smilax china L. leaf in 3T3-L1 adipocytes

  • Kang, Yun Hwan;Kim, Kyoung Kon;Kim, Dae Jung;Choe, Myeon
    • Nutrition Research and Practice
    • /
    • 제9권6호
    • /
    • pp.606-612
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Several medicinal properties of Smilax china L. have been studied including antioxidant, anti-inflammatory, and anti-cancer effects. However, the antiobesity activity and mechanism by which the water-soluble fraction of this plant mediates its effects are not clear. In the present study, we investigated the lipolytic actions of the water-soluble fraction of Smilax china L. leaf ethanol extract (wsSCLE) in 3T3-L1 adipocytes. MATERIALS/METHODS: The wsSCLE was identified by measuring the total polyphenol and flavonoid content. The wsSCLE was evaluated for its effects on cell viability, lipid accumulation, glycerol, and cyclic adenosine monophosphate (cAMP) contents. In addition, western blot analysis was used to evaluate the effects on protein kinase A (PKA), PKA substrates (PKAs), and hormone-sensitive lipase (HSL). For the lipid accumulation assay, 3T3-L1 adipocytes were treated with different doses of wsSCLE for 9 days starting 2 days post-confluence. In other cell experiments, mature 3T3-L1 adipocytes were treated for 24 h with wsSCLE. RESULTS: Results showed that treatment with wsSCLE at 0.05, 0.1, and 0.25 mg/mL had no effect on cell morphology and viability. Without evidence of toxicity, wsSCLE treatment decreased lipid accumulation compared with the untreated adipocyte controls as shown by the lower absorbance of Oil Red O stain. The wsSCLE significantly induced glycerol release and cAMP production in mature 3T3-L1 cells. Furthermore, protein levels of phosphorylated PKA, PKAs, and HSL significantly increased following wsSCLE treatment. CONCLUSION: These results demonstrate that the potential antiobesity activity of wsSCLE is at least in part due to the stimulation of cAMP-PKA-HSL signaling. In addition, the wsSCLE-stimulated lipolysis induced by the signaling is mediated via activation of the ${\beta}$-adrenergic receptor.

Mechanistic target of rapamycin and an extracellular signaling-regulated kinases 1 and 2 signaling participate in the process of acetate regulating lipid metabolism and hormone-sensitive lipase expression

  • Li, Yujuan;Fu, Chunyan;Liu, Lei;Liu, Yongxu;Li, Fuchang
    • Animal Bioscience
    • /
    • 제35권9호
    • /
    • pp.1444-1453
    • /
    • 2022
  • Objective: Acetate plays an important role in host lipid metabolism. However, the network of acetate-regulated lipid metabolism remains unclear. Previous studies show that mitogen-activated protein kinases (MAPKs) and mechanistic target of rapamycin (mTOR) play a crucial role in lipid metabolism. We hypothesize that acetate could affect MAPKs and/or mTOR signaling and then regulate lipid metabolism. The present study investigated whether any cross talk occurs among MAPKs, mTOR and acetate in regulating lipid metabolism. Methods: The ceramide C6 (an extracellular signaling-regulated kinases 1 and 2 [ERK1/2] activator) and MHY1485 (a mTOR activator) were used to treat rabbit adipose-derived stem cells (ADSCs) with or without acetate, respectively. Results: It indicated that acetate (9 mM) treatment for 48 h decreased the lipid deposition in rabbit ADSCs. Acetate treatment decreased significantly phosphorylated protein levels of ERK1/2 and mTOR but significantly increased mRNA level of hormone-sensitive lipase (HSL). Acetate treatment did not significantly alter the phosphorylated protein level of p38 MAPK and c-Jun aminoterminal kinase (JNK). Activation of ERK1/2 and mTOR by respective addition in media with ceramide C6 and MHY1485 significantly attenuated decreased lipid deposition and increased HSL expression caused by acetate. Conclusion: Our results suggest that ERK1/2 and mTOR signaling pathways are associated with acetate regulated HSL gene expression and lipid deposition.

Methanolic Extract of Turmeric (Curcuma longa L.) Enhanced the Lipolysis by Up-regulation of Lipase mRNA Expression in Differentiated 3T3-L1 Adipocytes

  • Lee, Jeong-Min;Jun, Woo-Jin
    • Food Science and Biotechnology
    • /
    • 제18권6호
    • /
    • pp.1500-1504
    • /
    • 2009
  • Effects of methanol extract from turmeric (Curcuma longa L.) (CME) on underlying mechanisms of lipolysis were investigated in 3T3-L1 adipocytes. Compared to the control, lipid accumulation with 72 hr treatment of CME at the concentration $20\;{\mu}g/mL$ was significantly decreased by 19.9% as quantified by Oil red O dye. Intracellular triglyceride (TG) content was also lowered by 19.3%. To determine the mechanism for TG content reduction, glycerol release level was measured. Incubation of 3T3-L1 adipocytes with 15 and $20\;{\mu}g/mL$ of CME significantly elevated the level of free glycerol released into the cultured medium by 20.4 and 28.6%, respectively. In subsequent measurements using quantitative real-time polymerase chain reaction (PCR), mRNA levels of hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) were significantly increased by 21.2 and 24.9%, respectively, at the concentration $20\;{\mu}g/mL$. Results indicated that CME stimulated lipolysis through induction of HSL and ATGL mRNA expressions, resulting in increased glycerol release.

Medicarpin induces lipolysis via activation of Protein Kinase A in brown adipocytes

  • Imran, Khan Mohammad;Yoon, Dahyeon;Lee, Tae-Jin;Kim, Yong-Sik
    • BMB Reports
    • /
    • 제51권5호
    • /
    • pp.249-254
    • /
    • 2018
  • Natural pterocarpan Medicarpin (Med) has been shown to have various beneficial biological roles, including inhibition of osteoclastogenesis, stimulation of bone regeneration and induction of apoptosis. However, the effect of the Med on lipolysis in adipocytes has not been reported. Here, we show the effect of Med on lipolysis in different mouse adipocytes and elucidate the underlying mechanism. We observed that Med treatment promoted release of glycerol in the media. Differentiated mouse brown adipose tissue cells were treated with Med. RNA-Seq analysis was performed to elucidate the effect of med and subsequently was confirmed by qRT-PCR and western blotting analyses. Med treatment increased both protein and gene expression levels of hormone-sensitive lipase (Hsl) and adipose triglyceride lipase (Atgl), which are two critical enzymes necessary for lipolysis. Mechanistic study showed that Med activates Protein Kinase A (PKA) and phosphorylates Hsl at PKA target position at $Serine^{660}$. Silencing of PKA gene by short interfering RNA attenuated the Med-induced increase in glycerol release and Hsl phosphorylation. The results unveil that Med boosts lipolysis via a PKA-dependent pathway in adipocytes and may provide a possible avenue of further research of Med mediated reduction of body fat.

미역 에탄올 추출물이 지방세포 형성과정에 미치는 영향 (Anti-adipogenic Effect of Undaria pinnatifida Extracts by Ethanol in 3T3-L1 Adipocytes)

  • 김혜진;강창한;김성구
    • 생명과학회지
    • /
    • 제22권8호
    • /
    • pp.1052-1056
    • /
    • 2012
  • 미역(Undaria pinnatifada)은 낮은 칼로리 및 요오드의 원료로써 천연체중조절식품으로 알려져 있다. 미역이 체중조절식품으로 알려져 있음에도 불구하고, 지방세포 분화 및 지방축적에 관한 저해 기작은 연구가 미비하다. 본 연구에서는 3T3-L1에서 지방세포로 분화가 일어나는 단계에서 미역에탄올추출물의 효과 및 기작을 확인하였다. 미역에탄올추출물의 독성과 지방축적저해효과는 MTT assay, Oil red O staining, RT-PCR과 western blot으로 분석하였다. 미역에탄올추출물은 50 ${\mu}g/ml$의 농도에서 독성을 띄지 않았다. 3T3-L1의 분화 및 지방세포에서 triglyceride축적과정동안 50 ${\mu}g/ml$의 미역에탄올추출물을 처리하였으며, 미역에탄올추출물은 지방세포에서 triglyceride의 축적을 40% 감소시켰다. 지방세포 특이적 단백질인 Peroxisome proliferator activated receptor ${\gamma}$ ($PPAR{\gamma}$), leptin과 Hormone sensitive lipase (HSL)의 발현은 RT-PCR과 western blot으로 확인하였다. $PPAR{\gamma}$의 과발현은 지방세포의 분화를 촉진시킨다. 또한 지방세포 크기의 증가와 세포 내 triglyceride의 함량에 따라 leptin은 세포 외로 분비된다. 그러므로 $PPAR{\gamma}$와 leptin은 비만의 지표로 사용된다. 첨가한 미역에탄올추출물의 농도가 높아질수록 $PPAR{\gamma}$와 leptin의 발현이 억제되었다. 이상의 결과를 통하여, 미역의 에탄올 추출물은 지방전구세포의 분화를 억제시키며, 지방세포 내 triglyceride의 축적을 저해하는 것으로 판단된다.

The Regulation of Lipolysis in Adipose Tissue

  • Serr, Julie;Li, Xiang;Lee, Kichoon
    • Journal of Animal Science and Technology
    • /
    • 제55권4호
    • /
    • pp.303-314
    • /
    • 2013
  • Knowledge regarding lipid catabolism has been of great interest in the field of animal sciences. In the livestock industry, excess fat accretion in meat is costly to the producer and undesirable to the consumer. However, intramuscular fat (marbling) is desirable to enhance carcass and product quality. The manipulation of lipid content to meet the goals of animal production requires an understanding of the detailed mechanisms of lipid catabolism to help meticulously design nutritional, pharmacological, and physiological approaches to regulate fat accretion. The concept of a basic system of lipases and their co-regulators has been identified. The major lipases cleave triacylglycerol (TAG) stored in lipid droplets in a sequential manner. In adipose tissue, adipose triglyceride lipase (ATGL) performs the first and rate-limiting step of TAG breakdown through hydrolysis at the sn-1 position of TAG to release a non-esterified fatty acid (NEFA) and diacylglycerol (DAG). Subsequently, cleavage of DAG occurs via the rate-limiting enzyme hormone-sensitive lipase (HSL) for DAG catabolism, which is followed by monoglyceride lipase (MGL) for monoacylglycerol (MAG) hydrolysis. Recent identification of the co-activator (Comparative Gene Identification-58) and inhibitor [G(0)/G(1) Switch Gene 2] of ATGL have helped elucidate this important initial step of TAG breakdown, while also generating more questions. Additionally, the roles of these lipolysis-related enzymes in muscle, liver and skin tissue have also been found to be of great importance for the investigation of systemic lipolytic regulation.

Slim813의 지방산 분해 촉진을 통한 슬리밍 효능 연구 (Reduction of Local Body Fat Thickness and Stimulation of Fat Cell Lipolysis by Slim813)

  • 박미영;정경미;주경미;김연준;박영호;임경민
    • 대한화장품학회지
    • /
    • 제38권2호
    • /
    • pp.189-195
    • /
    • 2012
  • Slim813은 2-사이클로펜텐-1-온 옥심 유도체로서 다양한 염증성 자극원에 대한 TNF 생성을 억제하는 항 자극 및 UV에 의한 MMP1 억제를 통한 항 노화 효능을 갖는 물질이다. 본 연구를 통하여 이와 같은 효능 외에도 완전히 분화된 지방 세포에서 cAMP (cyclic adenosine monophosphate) 생성 촉진을 통한 HSL (hormone sensitive lipase) 활성을 증대시킴으로써 지방분해를 증가시킴을 확인하였다. 또한 Slim813을 사람의 팔과 허벅지 부위에 2주간 도포하였을 때 지방의 두께 감소를 유발하는 것으로 나타나 체내 피하 지방을 분해하는 효능을 갖는 것으로 사료된다.

Selection and Characterization of Forest Soil Metagenome Genes Encoding Lipolytic Enzymes

  • Hong, Kyung-Sik;Lim, He-Kyoung;Chung, Eu-Jin;Park, Eun-Jin;Lee, Myung-Hwan;Kim, Jin-Cheol;Cho, Gyung-Ja;Cho, Kwang-Yun;Lee, Seon-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권10호
    • /
    • pp.1655-1660
    • /
    • 2007
  • A metagenome is a unique resource to search for novel microbial enzymes from the unculturable microorganisms in soil. A forest soil metagenomic library using a fosmid and soil microbial DNA from Gwangneung forest, Korea, was constructed in Escherichia coli and screened to select lipolytic genes. A total of seven unique lipolytic clones were selected by screening of the 31,000-member forest soil metagenome library based on tributyrin hydrolysis. The ORFs for lipolytic activity were subcloned in a high copy number plasmid by screening the secondary shortgun libraries from the seven clones. Since the lipolytic enzymes were well secreted in E. coli into the culture broth, the lipolytic activity of the subclones was confirmed by the hydrolysis of p-nitrophenyl butyrate using culture supernatant. Deduced amino acid sequence analysis of the identified ORFs for lipolytic activity revealed that 4 genes encode hormone-sensitive lipase (HSL) in lipase family IV. Phylogenetic analysis indicated that 4 proteins were clustered with HSL in the database and other metagenomic HSLs. The other 2 genes and 1 gene encode non-heme peroxidase-like enzymes of lipase family V and a GDSL family esterase/lipase in family II, respectively. The gene for the GDSL enzyme is the first description of the enzyme from metagenomic screening.

오미자 추출물의 지방세포 분화 억제 효과 (Inhibition Effects of Galla Chinenisis Extract on Adipocyte Differentiation in OP9 Cells)

  • 박선영;황홍연;서은아;권강범;류도곤
    • 동의생리병리학회지
    • /
    • 제26권4호
    • /
    • pp.455-461
    • /
    • 2012
  • Obesity is associated with numerous diseases such as type 2 diabetes, hypertension and cancer. Inhibition of adipogenesis is a effectite strategy to anti-obesity. In this study, Galla Chinenisis extract (GCE) inhibited adipocyte differentiation in OP9 cells. There was no cytotoxicity when cells were treated with GCE in designated time intervals, unaffected by concentration. In this cell model, increases in fat storage were inhibited by 2 days treatment with various concentration of GCE, visualized by Oil red-O, BODIPY and DAPI staining. To understand the underlying mechanism at the molecular level, the effects of GCE were examined on the expression of the genes involved in adipogenesis by real-time PCR. In the progress of adipocyte differentiation with GCE-treated, the mRNA level of adipogenic genes such as peroxisome-proliferator-activated receptors gamma ($PPAR{\gamma}$), computer-assisted axial tomography/enhancer binding protein-alpha ($C/EBP{\alpha}$) were decreased. Also, GCE treatment inhibited increase of mRNA expression, which is adipogenic factor such as fatty acid synthase (FAS), hormone-sensitve lipase (HSL), lipoprotein lipase (LPL), and adipocyte-specific lipid binding protein (aP2). Therefore, the result of this study suggest that Galla Chinenisis extract can prevent adipocyte differentiation and GCE may have a great potential as a novel anti-adipogenic agent.