• Title/Summary/Keyword: hormone receptors

Search Result 185, Processing Time 0.031 seconds

Single Nucleotide Polymorphisms on Peroxisome Proliferator-activated Receptor Genes Associated with Fatness Traits in Chicken

  • Meng, H.;Zhao, J.G.;Li, Z.H.;Li, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.9
    • /
    • pp.1221-1225
    • /
    • 2005
  • The peroxisome proliferator-activated receptors (PPARs) are members of a superfamily of nuclear hormone receptors. Lots of studies in rodents and humans have shown that PPARs were involved in lipid metabolism and adipocyte differentiation. The main objective of this work was to detect the single nucleotide polymorphisms (SNPs) in whole coding regions of peroxisome proliferator-activated receptor alpha (PPAR-$\alpha$) and gamma (PPAR-$\gamma$) genes with approach of single strand conformation polymorphism (SSCP) in the chicken population of Arber Acres broiler, Hyline layer and three Chinese native breeds (Shiqiza, Beijing You, Bai'r). Two SNPs of C1029T and C297T were found in chicken PPAR-$\alpha$ and PPAR-$\gamma$ genes respectively and each SNP found three genotypes in the experimental populations. The results showed that the distribution frequency of 3 genotypes in Arber Acres broiler, Hyline layer and Chinese native breeds had significant differences on the PPAR-$\alpha$ and PPAR-$\gamma$ gene respectively (p<0.01). Furthermore, in the PPAR-$\alpha$ gene, the results of least square estimation for genotypes and body composition traits showed the BB genotype birds had higher abdominal fat weight (AFW) and percentage of abdominal fat (AFP) than AA genotype birds (p<0.05). From these we conjecture the PPAR-$\alpha$ and PPAR-$\gamma$ genes were suffered intensive selection during the long term commercial breeding and the PPAR-$\alpha$ gene may be a major gene or linked to the major genes that impact chicken fat metabolism and the SNPs could be used in molecular assistant selection (MAS) as a genetic marker for the chicken fatness traits.

A Simple ELISA for Screening Ligands of Peroxisome Proliferator-activated Receptor γ

  • Cho, Min-Chul;Lee, Hae-Sook;Kim, Jae-Hwa;Choe, Yong-Kyung;Hong, Jin-Tae;Paik, Sang-Gi;Yoon, Do-Young
    • BMB Reports
    • /
    • v.36 no.2
    • /
    • pp.207-213
    • /
    • 2003
  • Peroxisome proliferator-activated receptors (PPARs) are orphan nuclear hormone receptors that are known to control the expression of genes that are involved in lipid homeostasis and energy balance. PPARs activate gene transcription in response to a variety of compounds, including hypolipidemic drugs. Most of these compounds have high affinity to the ligand-binding domain (LBD) of PPARs and cause a conformational change within PPARs. As a result, the receptor is converted to an activated mode that promotes the recruitment fo co-activators such as the steroid receptor co-activator-1 (SRC-1). Based on the activation mechanism of PPARs (the ligand binding to $PPAR{\gamma}$ induces interactions of the receptor with transcriptional co-activators), we performed Western blot and ELISA. These showed that the indomethacin, a $PPAR{\gamma}$ ligand, increased the binding between $PPAR{\gamma}$ and SRC-1 in a ligand dose-dependent manner. These results suggested that the in vitro conformational change of $PPAR{\gamma}$ by ligands was also induced, and increased the levels of the ligand-dependent interaction with SRC-1. Collectively, we developed a novel and useful ELISA system for the mass screening of $PPAR{\gamma}$ ligands. This screening system (based on the interaction between $PPAR{\gamma}$ and SRC-1) may be a promising system in the development of drugs for metabolic disorders.

Androgen in the Uterus: A Compensator of Estrogen and Progesterone

  • Cheon, Yong-Pil;Lee, Dong-Mok;Chun, Tea-Hoon;Lee, Ki-Ho;Choi, In-Ho
    • Development and Reproduction
    • /
    • v.13 no.3
    • /
    • pp.133-143
    • /
    • 2009
  • Pivotal roles of steroid hormones in uterine endometrial function are well established from the mouse models carrying the null mutation of their receptors. Literally androgen belongs to male but interestingly it also detected in female. The fluctuations of androgen levels are observed during reproductive cycle and pregnancy, and the functional androgen receptor is expressed in reproductive organs including uterus. Using high throughput methodology, the downstream genes of androgen have been isolated and revealed correlations between other steroid hormones. In androgen-deficient mice, uterine responses to exogenous gonadotropins are impaired and the number of pups per litter is reduced dramatically. As expected androgen has important role in decidual differentiation through AR. It regulates specific gene network during those cellular responses. Recently we examined the effects of steroid hormonal complex containing high level of androgen. Interestingly, on the contrary to the androgen-alone administration, the hormonal complex did not disturb the decidual reaction and the pubs did not show any morphological abnormality. It is suspected that the complexity of communication between other steroid hormone and their receptors are the reasons. In summary, androgen exists in female blood and it suggests the importance of androgen in female reproduction. However, the complex interactions with other hormones are not fully understood compared with estrogen and progesterone. The further studies to evaluate the possible role of androgen are needed and important to provide the in vivo rational for the prevention of associated pregnancy complications and help human's health.

  • PDF

Ginsentology III;Identifications of Ginsenoside Interaction Sites for Ion Channel Regulation

  • Choi, Sun-Hye;Shin, Tae-Joon;Lee, Byung-Hwan;Lee, Jun-Ho;Hwang, Sung-Hee;Pyo, Mi-Kyung;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.32 no.2
    • /
    • pp.99-106
    • /
    • 2008
  • A ligand - whether an endogenous hormone, neurotransmitter, exogenous toxin or synthetic drug - binds to plasma membrane proteins (e.g., ion channels, receptors or other functional proteins) to exert its physiological or pharmacological effects. Ligands can also have functional groups, showing stereospecificity for interaction sites on their counterpart plasma membrane proteins. Previous reports have shown that the ginsenoside Rg$_3$, a bioactive ginsenoside, meets these criteria in that: 1) an aliphatic side chain of $Rg_3$ plays a role as a functional group, 2) Rg$_3$ regulates voltage- and ligand-gated ion channels in a stereospecific manner with respect to carbon-20, and 3) $Rg_3$ regulates subsets of ligand-gated and voltage-gated ion channels through specific interactions with identified amino acid residues inside the channel pore, in the outer pore entryway, or in toxin binding sites. Rg$_3$, therefore, could be a candidate for a novel ginseng-derived glycosidic ligand regulating ion channels and receptors. This review will examine how Rg$_3$ regulates voltage-gated and ligand-gated ion channels through interactions with its target proteins in the plasma membrane. Hopefully, this review will advance understanding of ginseng pharmacology at the cellular and molecular levels.

Effect of Ethane 1,2-Dimethane Sulfonate(EDS) on the Expression of Steroid Hormone Receptors, $5{\alpha}$-reductase and Aromatase in the Rat Epididymis (흰쥐 부정소 내의 스테로이드 호르몬 수용체, $5{\alpha}$-reductase 그리고 Aromatase 발현에 미치는 EDS의 영향)

  • Son, Hyeok-Joon;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.11 no.3
    • /
    • pp.187-193
    • /
    • 2007
  • Ethane 1,2-dimethane sulfonate(EDS), a Leydig cell specific toxicant, has been widely used to create the reversible testosterone withdrawal rat model. Though the maintenance of epididymal structure and function is highly dependent on the testosterone secreted from testis, its derivatives, dihydroxytestosterone(DHT) and estrogen, might have crucial roles. The aim of present study was to monitor the expression patterns of sex steroid receptors, cytochrome P450 aromatase(P450arom) and $5{\alpha}$-reductase in the rat epididymis up to 7 weeks after EDS injection. Adult male rats($350{\sim}400g$) were injected with a single does of EDS(75 mg/kg i.p.) and sacrificed on weeks 0, 1, 2, 3, 4, 5, 6 and 7. The transcriptional activities of the target genes were evaluated by semi-quantitative RT-PCRs. The transcript level of estrogen receptor alpha($ER{\alpha}$) in EDS group was significantly higher than control level on week 1(P<0.01). After week 2, there was no significant difference in $ER{\alpha}$ levels between EDS group and control. The transcript level of estrogen receptor beta($ER{\beta}$) in EDS group was significantly higher than control level on week 1(P<0.05), lowered on weeks 2 and 3(P<0.05 and P<0.01, respectively), fluctuated during weeks 4 and 6, and elevated on week 7(P<0.05). The androgen receptor (AR) message levels increased significantly week 2(P<0.01), then returned to control level on week 3. In contrast, expression of cytochrome P450 aromatase(P450arom) decreased sharply during weeks $1{\sim}3$(P<0.01 on weeks 1 and 2; P<0.05 on week 3), then went back to control level on week 4. The mRNA level of $5{\alpha}$-reductase type 2($5{\alpha}$-RT2) increased significantly on week 4(P<0.01), then returned to control level. The present study indicated that EDS administration could induce reversible alterations in the transcriptional activities of sex steroid hormone receptors and androgenconverting enzymes in rat epididymis. EDS injection model will be useful to clarify the regulation mechanism of mammalian epididymal physiology.

  • PDF

Effects of the dopaminergic system on release of TSH and thyroid hormone in rats (랫드에서 TSH와 갑상선 호르몬에 미치는 dopamine계의 영향)

  • Lee, Sang-woo;Kim, Jin-sang;Han, Jeong-hee
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.2
    • /
    • pp.165-173
    • /
    • 1992
  • The present study was carried out to investigate the effects of dopaminergic drugs and the role of specific dopamine(DA) receptors on the release of TSH, $T_4$ and $T_3$. Serum TSH levels (cold-induced, $4{^{\circ}C}$) were determined using RIA(radioimmunoassay) at 30 min after administration of dopamine agonists and antagonists. Serum $T_4$ and $T_3$ levels were detected after these dopaminergic drugs were administered subcutaneously twice a day for a week. The results of the study are summarized as follows : Apomorphine, a nonspecific DA receptor agonist, produced a dose-depedent decrease in serum TSH, $T_4$ and $T_3$ levels. However, only low doses (0.3, 1.0mg/kg) of SKF38393, a specific $D_1$-receptor agonist, produced a decrease in serum lelvels of TSH. I,Y171555, a specific $D_2$-receptor agonist, produced a dose dependent decrease in serum TSH, $T_4$ and $T_3$ levels. However, SCH23390, a specific $D_1$-receptor antagonist, produced a decrease except in serum T levels which were increased dose dependently. High doses (1.0, 3.0mg/kg) of sulpiride, a specific $D_2$-receptor antagonist, made a increase in the serum levels of TSH and $T_3$. The effects of dopaminergic drugs in serum TSH and $T_4$ levels was potentiated by the pretreatment of apomorphine. The overall results of this study suggest that the regulation of TSH, $T_4$ and $T_3$ secretion were mediated via specific $D_1$ and $D_2$ receptor.

  • PDF

Signal transduction of C-terminal phosphorylation sites for equine follicle stimulating hormone receptor (eFSHR)

  • Seong, Hoon-Ki;Choi, Seung-Hee;Byambaragchaa, Munkhzaya;Min, Kwan-Sik
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.155-162
    • /
    • 2020
  • Equine follicle stimulating hormone receptor (eFSHR) has a large extracellular domain and an intracellular domain containing approximately 10 phosphorylation sites within the G protein-coupled receptor. This study was conducted to analyze the function of phosphorylation sties at the eFSHR C-terminal region. We constructed a mutant of eFSHR, in which the C-terminal cytoplasmic tail was truncated at residue 641 (eFSHR-t641). This removed 10 potential phosphorylation sites from the C-terminal region of the intracellular loop. The eFSHR-wild type (eFSHR-wt) and eFSHR-t641 cDNAs were subcloned into the pCMV-ARMS1-PK2 expression vector. These plasmids were transfected into PathHunter CHO-K1 Parental cells expressing β-arrestin 2 enzyme acceptor fusion protein and analyzed for agonist-induced cAMP response. The cAMP response in cells expressing eFSHR-t641 was lower than the response in cells expressing eFSHR-wt. EC50 values of eFSHR-wt and eFSHR-t641 were 1079 ng/mL and 1834 ng/mL, respectively. eFSHR-t641 was approximately 0.58-fold compared with that of eFSHR-wt. The maximal response in eFSHR-wt and eFSHR-t641 was 24.7 nM and 16.7 nM, respectively. The Rmax value of phosphorylation sites in eFSHR-t641 was also decreased to approximately 68.4% of that in eFSHR-wt. The collective data implicate that the phosphorylation sites in the eFSHR C-terminal region have a pivotal role in signal transduction in PathHunter CHO-K1 cells, and indicate that β-arrestin is involved in coupling the activated receptors to the internalization system.

Effects of Atrial Natriuretic Peptide on Renal and Hormonal Balances in terms of Aging in Rabbits (연령증가에 따른 Atrial Natriuretic Peptide의 신장과 호르몬 효과)

  • Kim, Jong-Duk;Kim, Suhn-Hee;Kim, Jung-Soo;Cho, Kyung-Woo
    • The Korean Journal of Physiology
    • /
    • v.23 no.1
    • /
    • pp.51-66
    • /
    • 1989
  • Mammalian cardiocytes secrete atrial natriuretic peptides (ANPs) into plasma, which cause marked natriuresis, diuresis, vasorelaxation and inhibition of hormone secretions. Aging influences the ability of the kidney both to conserve and to excrete sodium; i.e., in old animals, the excretory capacity of sodium is reduced and the time required to excrete sodium load is prolonged. Therefore, it is possible that animals differing in ages may respond differently to ANP. In the present study, we determined whether the renal, hormonal and vascular effects of ANP may be influenced by aging in conscious rabbits. The plasma renin concentration decreased with aging but plasma ANP concentration was significantly lower only in 24-month-old rabbits. Plasma aldosterone concentration and atrial ANP content did not change by aging. In 1-month-old rabbits, ANP (atriopeptin III, 3 ug/kg) administered intravenously caused hypotension and decreased in plasma renin and aldosterone concentrations, but did not cause diuresis and natriuresis. In 2 to 5 month-old rabbits, ANP caused hypotension, decreases in Plasma renin and aldosterone concentrations and marked renal effects. However, in 24-month-old rabbits, all the above effects of ANP was blunted. With hydration of physiological saline at a rate of 15 ml/kg/h for 2hr, urine volume and glomerular filtration rate did not change but the electrolyte excretion as well as fractional excretion of sodium significantly increased. The plasma concentrations of active renin and aldosterone were decreased but plasma inactive renin and ANP concentrations were increased. The changes in renal function and plasma level of hormone showed no differences in different ages. These results suggest that the peripheral vascular receptors to ANP may develop earlier than those in the kidney, and the attenuated vascular and renal responses to ANP in the old age may be due to age-related modifications in renal function and blood vessel.

  • PDF

Thyroid Hormone-Induced Alterations of $Ca^{2+}-ATPase$ and Phospholamban Protein Expression in Cardiac Sarcoplasmic Reticulum

  • Kim, Hae-Won;Noh, Kyung-Min;Park, Mi-Young;Lee, Hee-Ran;Lee, Eun-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.2
    • /
    • pp.223-230
    • /
    • 1999
  • Alterations of cardiovascular function associated with various thyroid states have been studied. In hyperthyroidism left ventricular contractility and relaxation velocity were increased, whereas these parameters were decreased in hypothyroidism. The mechanisms for these changes have been suggested to include alterations in the expression and/or activity levels of various proteins; ${\alpha}-myosin$ heavy chain, ${\beta}-myosin$ heavy chain, ${\beta}-receptors,$ the guanine nucleotide-binding regulatory protein, and the sarcolemmal $Ca^{2+}-ATPase.$ All these cellular alterations may be associated with changes in the intracellular $Ca^{2+}$ concentration. The most important regulator of intracellular $Ca^{2+}$ concentration is the sarcoplasmic reticulum (SR), which serves as a $Ca^{2+}$ sink during relaxation and as a $Ca^{2+}$ source during contraction. The $Ca^{2+}-ATPase$ and phospholamban are the most important proteins in the SR membrane for muscle relaxation. The dephosphorylated phospholamban inhibits the SR $Ca^{2+}-ATPase$ through a direct interaction, and phosphorylation of phospholamban relieves the inhibition. In the present study, quantitative changes of $Ca^{2+}-ATPase$ and phospholamban expression and the functional consequences of these changes in various thyroid states were investigated. The effects of thyroid hormones on (1) SR $Ca^{2+}$ uptake, (2) phosphorylation levels of phospholamban, (3) SR $Ca^{2+}-ATPase$ and phospholamban protein levels, (4) phospholamban mRNA levels were examined. Our findings indicate that hyperthyroidism is associated with increases in $Ca^{2+}-ATPase$ and decreases in phospholamban levels whereas opposite changes in these proteins occur in hypothyroidism.

  • PDF

$Ginsenoside-R_{b1}$ Acts as a Weak Phytoestrogen in MCF-7 Human Breast Cancer Cells

  • Lee, Young-Joo;Jin, Young-Ran;Lim, Won-Chung;Park, Wan-Kyu;Cho, Jung-Yoon;Jang, Si-Youl;Lee, Seung-Ki
    • Archives of Pharmacal Research
    • /
    • v.26 no.1
    • /
    • pp.58-63
    • /
    • 2003
  • Ginseng has been recommended to alleviate the menopausal symptoms, which indicates that components of ginseng very likely contain estrogenic activity. We have examined the possibility that a component of Panax ginseng, $ginsenoside-R_{b1}$ acts by binding to estrogen receptor. We have investigated the estrogenic activity of $ginsenoside-R_{b1}$ in a transient transfection system using estrogen-responsive luciferase plasmids in MCF-7 cells. $ginsenoside-R_{b1}$ activated the transcription of the estrogen-responsive luciferase reporter gene in MCF-7 breast cancer cells at a concentration of 50 $\mu$M. Activation was inhibited by the specific estrogen receptor antagonist ICI 182,780, indicating that the estrogenic effect of $ginsenoside-R_{b1}$ is estrogen receptor dependent. Next, we evaluated the ability of $ginsenoside-R_{b1}$ to induce the estrogen-responsive gene c-fos by semi-quantitative RT-PCR assays and Western analyses. $ginsenoside-R_{b1}$ increased c-fos both at mRNA and protein levels. However, $ginsenoside-R_{b1}$ failed to activate the glucocorticoid receptor, the retinoic acid receptor, or the androgen receptor in CV-1 cells transiently transfected with the corresponding steroid hormone receptors and hormone responsive reporter plasmids. These data support our hypothesis that $ginsenoside-R_{b1}$ acts a weak phytoestrogen, presumably by binding and activating the estrogen receptor.