• Title/Summary/Keyword: hormone levels

Search Result 1,018, Processing Time 0.032 seconds

New protocol for the indirect regeneration of the Lilium ledebourii Bioss by using bulb explants

  • Ghanbari, Sina;Fakheri, Barat Ali;Naghavi, Mohammad Reza;Mahdinezhad, Nafiseh
    • Journal of Plant Biotechnology
    • /
    • v.45 no.2
    • /
    • pp.146-153
    • /
    • 2018
  • Lilium ledebourii Bioss is a wild species of Lilium, which grows naturally in some provinces of Iran. Previous studies on Lilium tissue culture have been linked to direct regeneration and a few studies have been conducted on indirect regeneration, which has been studied under bright conditions. In this study, for the first time in the world, all the stages of indirect regeneration (callus induction, shoot and root induction) have been studied under dark conditions. Callus formation and the regeneration levels of L. Ledebourii Bioss were examined for three replicates in an MS (Murashige and Skoog) medium with different hormonal compositions and by using a factorial experiment in the framework of a completely random plan. For callus initiation, 2,4-D and kinetin hormones were used in five and four levels, respectively, as auxin and cytokinin. Results showed that the highest percentage of the callus was found in $3{\mu}M$ of 2,4-D and $0.5{\mu}M$ of kinetin. In terms of callus wet weight, the highest amount was found in $3{\mu}M$ of 2,4-D and $0.5{\mu}M$ of kinetin. In addition, in terms of diameter, the highest amount was found in $3{\mu}M$ of 2,4-D, and $0.5{\mu}M$ of kinetin. In summary, the 2,4-D hormone had a major impact on the percentage of regeneration increase so that the best response was related to the composition of $3{\mu}M$ of 2,4-D, and $0.1{\mu}M$ of kinetin. This study contended that auxin and cytokinin can induce long shoots and roots through cell elongation in dark condition.

Effects of Essential Fatty Acids during In Vitro Maturation of Porcine Oocytes: Hormone Synthesis and Embryonic Developmental Potential

  • Kim, Kang-Sig;Park, Hum-Dai
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.75-85
    • /
    • 2019
  • Omega-3 α-linolenic acid and omega-6 linoleic acid are essential fatty acids for health maintenance of human and animals because they are not synthesized in vivo. The purpose of this study was to evaluate the effect of α-linolenic acid and linoleic acid supplementation on in vitro maturation and developmental potential of porcine oocytes. Various concentrations of α-linolenic acid and linoleic acid were added into in vitro maturation medium, and we evaluated the degree of cumulus expansion, oocyte nuclear-maturation rate, blastocyst rate, blastocyst quality, and levels of prostaglandin E2, 17β-estradiol, and progesterone in the spent medium. High doses (100 μM) of α-linolenic acid and linoleic acid supplementation significantly inhibited cumulus expansion and oocyte nuclear maturation, and prostaglandin E2 synthesis also significantly decreased compared with other groups (p < 0.05). Supplementation of 50 μM α-linolenic acid and 10 μM linoleic acid showed higher quality blastocysts in terms of high cell numbers and low apoptosis when compared with other groups (p < 0.05), and synthesis ratio of 17β-estradiol / progesterone also significantly increased compared with control group (3.59 ± 0.22 vs. 2.97 ± 0.22, 3.4 ± 0.28 vs. 2.81 ± 0.19, respectively; p < 0.05). Our results indicated that supplementation with appropriate levels of α-linolenic acid and linoleic acid beneficially affects the change of hormone synthesis (in particular, an appropriate increase in the 17β-estradiol / progesterone synthesis ratio) for controlling oocyte maturation, leading to improved embryo quality. However, high doses of α-linolenic acid and linoleic acid treatment results in detrimental effects.

Responses of Cytochrome P450 and EROD Activity in Rockfish (Sebastes schlegeli) Administered Intraperitoneal Injection of 4-nonylphenol (노닐페놀을 주사한 조피볼락의 간장 cytochrome P450과 EROD의 반응)

  • 전중균;이지선;손영창;심원준;정지현;홍경표;김병기;한창희
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.1
    • /
    • pp.171-176
    • /
    • 2004
  • Nonyphenol (NP) used actively as non-ionic surfactant is classified as one of most potent endocrine disrupting chemicals. Effects of NP on mixed function oxygenase (MFO) system in rockfish (Sebastes schlegeli) were investigated for seven days after intraperitoneal injection (10 and 25 mg $kg^{-1}$). Hepatosomatic index (BSI) of fishes exposed to NP of 25 mg $kg^{-1}$ was significantly reduced compared to those in control group. NP exposure enhanced cytochrome P450 levels in the fish liver, while 7 ethoxyresorufin-O-deethylase (EROD) activity was inhibited. NP exposure levels in this study were much higher than those found in the coastal environment of Korea. Effects on HSI and liver MFO system, which is involved in steroid hormone metabolism, imply that W may influence on reproduction of fish by not only hormone receptor mediated response but also through effects on the MFO system.

Implications of Sex Hormone Receptor Gene Expression in the Predominance of Hepatocellular Carcinoma in Males: Role of Natural Products

  • Ahmed, Hanaa H;Shousha, Wafaa Gh;Shalby, Aziza B;El-Mezayen, Hatem A;Ismaiel, Nora N;Mahmoud, Nadia S
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.4949-4954
    • /
    • 2015
  • The present study was planned to investigate the role of sex hormone receptor gene expression in the pathogenesis of hepatocellular carcinoma (HCC). Adult male Wistar rats were divided into seven groups. Group (1) was negative control. Groups (2), (5), (6), and (7) were orally administered with N-nitrosodiethylamine for the induction of HCC, then group (2) was left untreated, group (5) was orally treated with curcumin, group (6) was orally treated with carvacrol, and group (7) was intraperitoneally injected with doxorubicin, whereas groups (3) and (4) were orally administered only curcumin and carvacrol, respectively. The HCC group showed significant upregulation in the androgen receptor (AR) and the estrogen receptor-alpha ($ER{\alpha}$) gene expression levels in the liver tissue. On the contrary, HCC groups treated with either curcumin or carvacrol showed significant downregulation in AR and $ER{\alpha}$ gene expression levels in the liver tissue. In conclusion, the obtained data highlight that both AR and $ER{\alpha}$ but not estrogen receptor-beta ($ER{\beta}$) gene expression may contribute to the male prevalence of HCC induced in male rats. Interestingly, both curcumin and carvacrol were found to have a promising potency in alleviating the male predominating HCC.

Adrenocorticotropic hormone (ACTH)-producing pheochromocytoma presented as Cushing syndrome and complicated by invasive aspergillosis

  • Cho, Jae Ho;Jeong, Da Eun;Lee, Jae Young;Jang, Jong Geol;Moon, Jun Sung;Kim, Mi Jin;Yoon, Ji Sung;Won, Kyu Chang;Lee, Hyoung Woo
    • Journal of Yeungnam Medical Science
    • /
    • v.32 no.2
    • /
    • pp.132-137
    • /
    • 2015
  • Adrenocorticotropic hormone (ACTH)-producing pheochromocytoma has been rarely reported, whereas only a few cases of Cushing syndrome accompanied by opportunistic infections have been reported. We experienced a patient with pheochromocytoma with ectopic Cushing syndrome complicated by invasive aspergillosis. A 35-year-old woman presented with typical Cushingoid features. Her basal plasma cortisol, ACTH, and 24-hour urine free cortisol levels were significantly high, and 24-hour urine metanephrine and catecholamine levels were slightly elevated. The endogeneous cortisol secretion was not suppressed by either low- or high-dose dexamethasone. Abdominal computed tomography (CT) revealed a heterogeneous enhancing mass measuring approximately 2.5 cm in size in the left adrenal gland. No definitive mass lesion was observed on sellar magnetic resonance imaging. On fluorine-18 fluorodeoxyglucose positron emission tomography/CT, a hypermetabolic nodule was observed in the left upper lung. Thus, we performed a percutaneous needle biopsy, which revealed inflammation, not malignancy. Thereafter, we performed a laparoscopic left adrenalectomy, and its pathologic finding was a pheochromocytoma with positive immunohistostaining for ACTH. After surgery, the biochemistry was normalized, but the clinical course was fatal despite intensive care because of the invasive aspergillosis that included the lungs, retina, and central nervous system.

Effects of Gonadotropin-Releasing Hormone on in vitro Gonadotropin Release in Testosterone-Treated Immature Rainbow Trout

  • Kim, Dae-Jung;Kim, Yi-Cheong;Aida, Katsumi
    • Animal cells and systems
    • /
    • v.13 no.4
    • /
    • pp.429-437
    • /
    • 2009
  • The control mechanism of gonadotropin-releasing hormone (GnRH) on gonadotropin (GTH) release was studied using cultured pituitary cell or cultured whole pituitary obtained from Testosterone (T) treated and control immature rainbow trout. The release of FSH was not changed by salmon type GnRH (sGnRH), chiken-II type (cGnRH-II), GnRH analogue ([des-$Gly^{10}D-Ala^6$] GnRH ethylamide) and GnRH antagonist ([Ac-3, 4-dehydro-$Pro^1$, D-p-F-$Phe^2$, D-$Trp^{3,6}$] GnRH) in cultured pituitary cells of T-treated and control fish. Indeed, FSH release was not also altered by sGnRH in cultured whole pituitary. All tested drugs had no effect on the release of LH in both culture systems of control fish. The levels of LH, in contrast, such as the pituitary content, basal release and responsiveness to GnRH were increased by T administration in both culture systems. In addition, the release of LH in response to sGnRH or cGnRH-II induced in a dose-dependent manner from cultured pituitary cells of T-treated fish, but which is not significantly different between in both GnRH at the concentration examined. Indeed, LH release was also increased by sGnRH in cultured whole pituitary of T-treated fish. GnRH antagonist suppressed the release of LH by sGnRH ($10^{-8}\;M$) and GnRH analogue ($10^{-8}\;M$) stimulation in a dose-dependent manner from cultured pituitary cells of T-treated fish, and which were totally inhibited by $10^{-7}\;M$ GnRH antagonist. These results indicate that the sensitivity of pituitary cells to GnRH is elevated probably through the T treatment, and that GnRH is involved in the regulation of LH release. GnRH-stimulated LH release is inhibited by GnRH antagonist in a dose-dependent manner. The effects of gonadal steroids on FSH levels are less clear.

Effects of Heavy Metals on the in vitro Follicular Steroidogenesis in Amphibians

  • Choi, Mee-Jeong;Ahn, Ryun-Sup;Kwon, Hyuk-Bang
    • Animal cells and systems
    • /
    • v.10 no.4
    • /
    • pp.211-217
    • /
    • 2006
  • Heavy metals are well known as important environmental pollutants and also considered as endocrine disrupters. This study was performed to evaluate the direct effects of heavy metals such as cadmium (Cd), zinc (Zn), mercury (Hg), lead (Pb), cobalt (Co), and arsenic (As) on the various steroidogenic enzymes in frog ovarian follicles. Ovarian follicles from Rana catesbeiana were isolated and cultured for 18 hours in the presence of frog pituitary homogenate (FPH, 0.05 gland/ml) or various steroid precursors with or without heavy metals (0.01-100 ${\mu}M$), and steroid levels in the follicle or culture medium were measured by radioimmunoassay (RIA). Thus, the steroidogenic enzyme activities were indirectly evaluated by measuring the converted steroid levels from the added precursor steroid. Among heavy metals, Hg, Cd and Zn significantly inhibited FPH-induced pregnenolone ($P_5$) production by the follicles ($EC_{50},\;4.0{\mu}M,\;25.6{\mu}M\;and\;5.7{\mu}M$, respectively ), and also suppressed the conversion of testosterone (T) to estradiol $17{beta}\;(E_2)\;(EC_{50},\;4.2{\mu}M,\;7.5{\mu}M\;and\;80.0{\mu}M) while Pb, Co and As are not or less effective in the inhibition. Other enzymes such as $C_{17-20}$ lyase and $17{\beta}$-hydroxysteroid dehydrogenase ($17{\beta}$-HSD) were suppressed only in the high concentration of Hg, Cd and Zn. Taken together, these data demonstrate that cytochrome P450 side chain cleavage (P450scc) and aromatase are much more sensitive to heavy metals than other steroidogenic enzymes and Hg, Cd and Zn show stronger toxicity to follicles than other heavy metals examined.

Effects of Fasting on Brain Expression of Kiss2 and GnRH I and Plasma Levels of Sex Steroid Hormones, in Nile Tilapia Oreochromis niloticus (절식이 나일 틸라피아 Oreochromis niloticus의 Kiss2, GnRH I mRNA 발현 및 성 스테로이드 호르몬 농도에 미치는 영향)

  • Park, Jin Woo;Kwon, Joon Yeong;Jin, Ye Hwa;Oh, Sung-Yong
    • Ocean and Polar Research
    • /
    • v.38 no.1
    • /
    • pp.81-88
    • /
    • 2016
  • In many fish species, including Nile tilapia (Oreochromis niloticus), gonadal development occurs at the expense of stored energy and nutrients. Therefore, reproductive systems are inhibited by limited food supply. It has been well established that reproductive function is highly sensitive to both metabolic status and energy balance. Nothing is known about the possible mediated connection between energy balance and reproduction. Kisspeptin, a neuropeptide product of the Kiss gene has emerged as an essential gatekeeper of reproduction and may be possibly be linked to energy balance and reproduction in non-mammalians. Thus, in this study, the effect of fasting (10 days) on the expression of kisspeptin and the gonadotropin-releasing hormone (GnRH) gene were assessed in Nile tilapia (male and female) using qRT-PCR. In addition, plasma levels of estradiol-$17{\beta}$ ($E_2$) and 11-ketotestosterone (11-KT) in adult tilapia were measured by ELISA. In male tilapia, fasting reduced Kiss2 and GnRH I mRNA expression in the brain and 11-KT level in comparison with the fed tilapia (p < 0.05). In females, however, there were no significant differences in GnRH I mRNA expression and $E_2$ between fish subjected to fasting and those fed (p > 0.05). These data indicate the impact of nutritional states on kisspeptin as a potential regulatory mechanism for the control of reproduction in male Nile tilapia.

Expression of Luteinizing Hormone (LH) and Its Receptor Gene in Uterus from Cycling Rats (발정 주기중 흰쥐 자궁에서의 Luteinizing Hormone (LH)과 수용체 유전자 발현)

  • Kim, Sung-Rye;Lee, Sung-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.3
    • /
    • pp.383-387
    • /
    • 1999
  • Objective: There is increasing evidence for the expression of rat in gene in several extrapituitary sites including testis and ovary. We also have demonstrated that the local LH expression in the rat epididymis and uterus, the major accessory sex organs in male and female reproductive system, respectively. Design: The present study was undertaken to elucidate whether the gene for LH receptor is expressed in rat uterus and whether the expressions of uterine LH and its receptor are differentially regulated during estrous cycle. Presence of the transcripts for rat LH receptor in the rat uterine tissue were confirmed by touchdown reverse transcription-polymerase chain reaction (RT-PCR). Results: In $LH{\beta}$ semi-quantitative RT-PCR, the highest expression level was shown in estrus stage. The level of ill receptor transcripts was also fluctuated during estrous cycle. In ovariectomized rats (OVX + Oil), the expressions of both uterine LH and LH-R were markedly reduced when compared to those from normal rats. Supplement with estradiol $17{\beta}$ to the ovariectomized rats (OVX + $E_2$) restored the expression levels of LH and its receptor to the levels in uteri from normal rats. Conclusion: Our findings indicated that 1) LH and its receptor gene are expressed in the rat uterus from cycling rats, 2) the expression of uterine LH and its receptor is mainly, if not all, under the control of ovarian sex steroid(s). These results suggested that the uterine LH may act as a local regulator with auto and/or paracrine manner, though the posibility that the pituitary LH may act directly on the regulation of uterine functions could not be discarded.

  • PDF

Expression of peroxiredoxin I regulated by gonadotropins in the rat ovary

  • Lee, Yu-Il;Kang, Woo-Dae;Kim, Mi-Young;Cho, Moon-Kyoung;Chun, Sang-Young
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.38 no.1
    • /
    • pp.18-23
    • /
    • 2011
  • Objective: Peroxiredoxins (Prxs) play an important role in regulating cellular differentiation and proliferation in several types of mammalian cells. This report examined the expression of Prx isotype I in the rat ovary after hormone treatment. Methods: Immature rats were injected with 10 IU of pregnant mare's serum gonadotropin (PMSG) to induce the growth of multiple preovulatory follicles and 10 IU of human chorionic gonadotropin (hCG) to induce ovulation. Immature rats were also treated with diethylstilbestrol (DES), an estrogen analogue, to induce the growth of multiple immature follicles. Northern blot analysis was performed to detect gene expression. Cell-type specific localization of Prx I mRNA were detected by in situ hybridization analysis. Results: During follicle development, ovarian Prx I gene expression was detected in 3-day-old rats and had increased in 21-day-old rats. The levels of Prx I mRNA slightly declined one to two days following treatment with DES. A gradual increase in Prx I gene expression was observed in ovaries obtained from PMSG-treated immature rats. Furthermore, hCG treatment of PMSG-primed rats resulted in a gradual stimulation of Prx I mRNA levels by 24 hours (2.1-fold increase) following treatment, which remained high until 72 hours following treatment. In situ hybridization analysis revealed the expression of the Prx I gene in the granulosa cells of PMSG-primed ovaries and in the corpora lutea of ovaries stimulated with hCG for 72 hours. Conclusion: These results demonstrate the gonadotropin and granulosa cell-specific stimulation of Prx I gene expression, suggesting its role as a local regulator of follicle development.