• Title/Summary/Keyword: horizontal shear strength

Search Result 242, Processing Time 0.03 seconds

The Shear Strength and Deformability of R/C Coupling Beams using Strut-and-Tie Models (스트럿-타이 모델을 이용한 철근 콘크리트 연결보의 전단강도와 변형능력)

  • Jang, Sang-Ki;Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.349-352
    • /
    • 2004
  • In this study, a strut-and-tie models for the coupling beam based on deformations are presented. To design shear-dominated R/C coupling beams, it is important to consider shear strength deterioration with required deformations. This study proposes the method of estimating shear strength of the reinforced concrete coupling beams. The proposed method determines the strain states from target displacements based on the nonlinear truss analysis. The estimated horizontal strain of beam is then used in calculating the strength of the diagonal strut with compatibility conditions. The deterioration of shear strength of the coupling beam depends on the strength degradation of struts due to plastic deformations.

  • PDF

Shear Strength of Inn-Rise Reinforced Concrete Shear Walls with Truss Model (트러스 모델에 의한 철근콘크리트 저형 전단벽의 전단강도)

  • 윤현도;최창식;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.97-102
    • /
    • 1992
  • To predict the shear strength of low - rise reinforced concrete shear walls with boundary elements, truss model theory considering the Vecchio - Collins stress - strain curve for softened concrete is applied. The model transforms cracked shear walls with a truss which consists of vertical bar. horizontal bar and diagonal concrete strut, and is based on equilibrium and compatibility conditions among three truss components, as well as stress - strain relationship considered for softening in diagonal concrete strut. In barbell specimens(M/VD = 0.75. fc = 420 kg/$\textrm{cm}^2$), the ratio of experimental to analytical maximum shear strength was within 0.83 ν$_{exp}$. / ν$_{cal}$. 1.25 with a relatively good agreement. As a result, the truss model was observed to be capable of predicting the maximum shear strength wi th a reasonable accuracy.acy.

  • PDF

Shear Performance of Hybrid Post and Beam Wall System Infilled with Structural Insulation Panel (SIP)

  • Shim, Kug-Bo;Hwang, Kweon-Hwan;Park, Joo-Saeng;Park, Moon-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.405-413
    • /
    • 2010
  • A hybrid post and beam shear wall system with structural insulation panel (SIP) infill was developed as a part of a green home 'Han-green' project through post and beam construction for contemporary life style. This project is on-going at the Korea Forest Research Institute to develop a new building system which improves Korean traditional wet-type building system and stimulates industrialized wood construction practice with pre-cut system. Compared to the traditional wet-type infill wall components, the hybrid wall system has benefits, such as, higher structural capacity, better thermal insulation performance, and shorter construction term due to the dry-type construction. To build up the hybrid wall system, in previous, SIP infill wall components can be manufactured at factory, and then inserted and nailed with helically threaded nails into the post and beam members at site. Shear performance of the hybrid wall system was evaluated through horizontal shear tests. The SIP hybrid wall system showed higher maximum shear strength, initial stiffness, ductility, yield strength, specified strength, and the specified allowable strength than those of post and beam with light-frame wall system. In addition to this, the hybrid wall system can provide speedy construction and structural and functional advantages including energy efficiency in the building system.

Predicting shear strength of RC exterior beam-column joints by modified rotating-angle softened-truss model

  • Wong, Simon H.F.;Kuang, J.S.
    • Computers and Concrete
    • /
    • v.8 no.1
    • /
    • pp.59-70
    • /
    • 2011
  • A theoretical model known as the modified rotating-angle softened-truss model (MRA-STM), which is a modification of Rotating-Angle Softened-Truss Model and Modified Compression Field Theory, is presented for the analysis of reinforced concrete membranes in shear. As an application, shear strength and behaviour of reinforced concrete exterior beam-column joints are analysed using the MRA-STM combining with the deep beam analogy. The joints are considered as RC panels and subjected to vertical and horizontal shear stresses from adjacent columns and beams. The strut and truss actions in a beam-column joint are represented by the effective transverse compression stresses and a softened concrete truss in the proposed model. The theoretical predictions of shear strength of reinforced concrete exterior beam-column joints from the proposed model show good agreement with the experimental results.

Creep characteristics and instability analysis of concrete specimens with horizontal holes

  • Xin, Yajun;Hao, Haichun;Lv, Xin;Ji, Hongying
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.563-572
    • /
    • 2018
  • Uniaxial compressive strength test and uniaxial compression creep one were produced on four groups of twelve concrete specimens with different hole number by RLW-2000 rock triaxial rheology test system. The relationships between horizontal holes and instantaneous failure stress, the strain, and creep failure stress, the strain, and the relationships between stress level and instantaneous strain, creep strain were studied, and the relationship between horizontal holes and failure mode was determined. The results showed that: with horizontal hole number increasing, compressive strength of the specimens decreased whereas its peak strain increased, while both creep failure strength and its peak strain decreased. The relationships between horizontal holes and compressive strength of the specimens, the peak strain, were represented in quadratic polynomial, the relationships between horizontal holes and creep failure strength, the peak strain were represented in both linear and quadratic polynomial, respectively. Instantaneous strain decreased with stress level increasing, and the more holes in the blocks the less the damping of instantaneous strain were recorded. In the failure stress level, instantaneous strain reversally increased, creep strain showed three stages: decreasing, increasing, and sharp increasing; in same stress level, the less holes the less creep strain rate was recorded. The compressive-shear failure was produced along specimen diagonal line where the master surface of creep failure occurred, the more holes in a block, the higher chances of specimen failure and the more obvious master surface were.

Effects of Web Reinforcement Amount on Hysteretic Behavior of High Strength Reinforced Concrete Structural Walls (전단보강근비에 따른 고강도 철근콘크리트 내력벽의 이력특성)

  • 최근도;정학영;윤현도;최장식;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.85-90
    • /
    • 1994
  • Three high strength reinforced concrete structural walls were tested under the combined action of a constant axial and a horizontal cycle load. The aim of the tests has been to investigate the effects of the web horizontal reinforcement on hysteretic behavior of wall. The results have helped to identify the causes of wall failure and have demonstrated the web horizontal reinforcement does not appear have a significant effect on shear capacity, stiffness and energy dissipation but have a significant effect on the failure mode of the walls.

  • PDF

Evaluation and Improvement of Structural Performance of Reinforced Shear Walls Under Load Reversals (철근콘크리트 내진벽의 구조성능 평가 및 개선)

  • 신종학;하기주;안준석;주정준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.683-688
    • /
    • 1999
  • The purpose of this study is to develop and evaluate the structural performance of various shear walls, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. under load reversals. For the diagonal reinforced slit and infilled shear wall specimens, it was found that the failure mode shows very effective crack control and crashing due to slippage prevention of boundary region and reduction of diagonal tension rather than the brittle shear and diagonal tension failure. The ductility of specimens designed by the diagonal reinforcement for the slit and infilled shear wall was increased 1.72~1.81 times in comparison with the fully rigid shear wall frame. Maximum horizontal load-carrying capacity of specimens designed by the diagonal reinforcement ratio the slit and infilled shear wall was increased respectively by 1.14 times and 1.49 times in comparison with the standard fully rigid shear wall frame.

  • PDF

Shear Strength of Prestressed PC-CIP Composite Beams with Vertical Shear Reinforcement (전단 철근 보강된 프리스트레스 PC와 CIP 합성보의 전단강도)

  • Suh, Jung-Il;Park, Hong-Gun;Hong, Geon-Ho;Kang, Su-Min;Kim, Chul-Goo
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.399-409
    • /
    • 2015
  • Recently, the use of composite construction method using precast (PC) and cast-in-place (CIP) concrete is increased in modular construction. For PC members, pre-tensioning is used to improve efficiency of the structural performance. However, current design codes do not clearly define shear strength of prestressed PC-CIP composite members. In this study, 22 specimens were tested to evaluate shear strength of prestressed composite members with vertical shear reinforcement. The test variables were the area ratio of high-strength (60 MPa) to low-strength concrete (24 MPa), prestressing force of strands, shear span-to-depth ratio(a/d), and vertical shear reinforcement ratio. The test results showed the prestressing force did not completely restrain diagonal cracking of non-prestressed concrete in the web. Thus, the effect of prestress force was not insignificant in the effect for monolithic beams. The vertical shear strength and horizontal shear strength of the composite beams were compared with the strength predictions of KCI design method.

Shear resistance behaviors of a newly puzzle shape of crestbond rib shear connector: An experimental study

  • Chu, Thi Hai Vinh;Bui, Duc Vinh;Le, Van Phuoc Nhan;Kim, In-Tae;Ahn, Jin-Hee;Dao, Duy Kien
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1157-1182
    • /
    • 2016
  • A newly puzzle shape of crestbond rib shear connector is a type of ductile perfobond rib shear connector. This shear connector has some advantages, including relatively easy rebar installation and cutting, as well as the higher shear resistance strength. Thus, this study proposed a newly puzzle shape of crestbond rib with a "${\mho}$" shape, and its shear resistance behaviors and shear strengths were examined using push-out tests. Five main parameters were considered in the push-out specimens to evaluate the effects of shear resistance parameters such as the dimensions of the crestbond rib, transverse rebars in the crestbond dowel, concrete strength, rebar strength, and dowel action on the shear strength. The shear loading test results were used to compare the changes in the shear behaviors, failure modes, and shear strengths. It was found that the concrete strength and number of transverse rebars in the crestbond rib were significantly related to its shear resistance. After the initial bearing resistance behavior of the concrete dowel, a relative slip occurred in all the specimens. However, its rigid behavior to shear loading decreased the ductility of the shear connection. The cross-sectional area of the crestbond rib was also shown to have a minor effect on the shear resistance of the crestbond rib shear connector. The failure mechanism of the crestbond rib shear connector was complex, and included compression, shear, and tension. As a failure mode, a crack was initiated in the middle of the concrete slab in a vertical direction, and propagated with increasing shear load. Then, horizontal cracks occurred and propagated to the front and rear faces of the specimens. Based on the results of this study, a design shear strength equation was proposed and compared with previously suggested equations.

Interfacial shear resistance of angle shear connectors welded to concrete filled U-shaped CFS beam

  • Oh, Hyoung Seok;Shin, Hyeongyeop;Ju, Youngkyu;Kang, Thomas H.K.
    • Steel and Composite Structures
    • /
    • v.43 no.3
    • /
    • pp.311-325
    • /
    • 2022
  • For multi-story structural systems, Korean steel industry has fostered development of a steel-concrete composite beam. Configuration of the composite beam is characterized by steel angle shear connectors welded to a U-shaped cold formed-steel beam. Effects of shear connector orientation and spacing were studied to evaluate current application of the angle shear connector design equation in AC495. For the study, interfacial shear resistance behavior was investigated by conducting 24 push-out tests and attuned using unreinforced push-out specimens. Interfacial shear to horizontal slip response was reported along with corresponding failure patterns. Pure shear connector strength was also evaluated by excluding concrete shear contribution, which was estimated in relation to steel beam-slab interface separation or interfacial crack width.