• Title/Summary/Keyword: horizontal convection

Search Result 257, Processing Time 0.026 seconds

Effect of variable viscosity on combined forced and free convection boundary-layer flow over a horizontal plate with blowing or suction

  • Mahmoud, Mostafa A.A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.57-70
    • /
    • 2007
  • The effects of variable viscosity, blowing or suction on mixed convection flow of a viscous incompressible fluid past a semi-infinite horizontal flat plate aligned parallel to a uniform free stream in the presence of the wall temperature distribution inversely proportional to the square root of the distance from the leading edge have been investigated. The equations governing the flow are transformed into a system of coupled non-linear ordinary differential equations by using similarity variables. The similarity equations have been solved numerically. The effect of the viscosity temperature parameter, the buoyancy parameter and the blowing or suction parameter on the velocity and temperature profiles as well as on the skin-friction coefficient and the Nusselt number are discussed.

  • PDF

Dual Natural-Convective Flows of Air in a Horizontal Annulus with a Constant Heat Flux Cylinder (일정 열유속 실린더를 갖는 수평 환형 공간에서의 공기의 이중 자연대류 유동)

  • Yoo Joo-Sik
    • Journal of computational fluids engineering
    • /
    • v.4 no.2
    • /
    • pp.1-8
    • /
    • 1999
  • Natural convection in a horizontal annulus with the inner cylinder heated by the application of a constant heat flux and the isothermally cooled outer cylinder is considered, and the transition of flows and the bifurcation phenomenon are numerically investigated for air with Pr=0.7. The zero initial condition always induces a crescent-sheped eddy flow. A bicellular flow in which the fluid descends along the vertical central plane of the annulus can be obtained at high Rayleigh number by introducing artificial numerical disturbances. Dual solutions are found above a certain critical Rayleigh number. Hysteresis phenomena have not been observed.

  • PDF

The effect of forced convection on boiling heat transfer from a horizontal tube (수평 원관의 비등 열전달에서 강제대류의 영향)

  • 이승홍;이억수;정은행
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.558-568
    • /
    • 1998
  • This paper presents the results of experiments involving external forced convection on boiling heat transfer from electrically heated horizontal tube to water in cross flow. In these experiments, all of the following primary variables were varied: heat flux, cross flow velocity, pressure and degree of subcooling. Local surface temperatures were measured at nine peripheral positions. Surface temperature distributions are classified into four groups as a function of heat flux. The characteristics of the boiling curve at different velocity, degree of subcooling and pressure are examined.

  • PDF

Natural Convection Heat Transfer in Inclined Cylindrical Water Layers (경사진 원형 수층에서의 자연대류 열전달)

  • 장병훈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.10
    • /
    • pp.787-794
    • /
    • 2003
  • The effect of inclination angle on natural convection heat transfer has been studied for water layers. The range of the Raleigh number was from the subcritical value to 1.4${\times}$10$^{7}$ , and the range of the inclination angle, $\theta$, measured from the horizontal was 0$\leq$$\theta$$\leq$180$^{\circ}$. For horizontal water layers, present results agreed well with the results of previous investigators and also showed significant departures from the results of air layers in the turbulent regime. Inclined cylindrical water layers showed secondary maxima in heat transfer, whereas rectangular air layers showed continuous decline of Nusselt number.

Chaotic Thermal Convection of a Intermediate Prandtl-Number Fluid in a Horizontal Annulus: Pr=0.2 (수평 환형 공간에서의 중간 Prandtl 수 유체의 혼돈 열대류: Pr=0.2)

  • Yu, Ju-Sik;Kim, Yong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.433-441
    • /
    • 2001
  • Natural convection of a fluid with intermediate Prand시 number of Pr=0.2 in a horizontal annulus is considered, and the bifurcation phenomena and chaotic flows are numerically investigated. The unsteady two-dimensional streamfunction-vorticity equation is solved with finite difference method. The steady downward flow with two counter-rotating eddies bifurcates to a simple periodic flow with a fundamental frequency. And afterwards, second Hopf bifurcation occurs, and a quasi-periodic flow with two incommensurable frequencies appears. However, a new time-periodic flow is established after experiencing quasi-periodic states. As Rayleigh number is increased further, the chaotic flow regime is reached after a sequence of successive Hopf bifurcation to quasi-periodic and chaotic flow regimes. A scenario similar to the Ruelle-Takens-Newhouse scenario of the onset of chaos is observed.

A Numerical Study of Natural Convection in a Horizontal Enclosure with Heat-Generating Conducting Body (발열 전도체가 존재하는 밀폐계 내부의 자연대류 현상에 대한 수치적 연구)

  • Lee, Jae-Ryong;Ha, Man-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1177-1182
    • /
    • 2004
  • The physical model considered here is a horizontal layer of fluid heated below and cooldabove with a heat-generating conducting body placed at the center of the layer. The body genrates a constant amount of heat as initial condition. Two-dimensional solution for unsteady natural convection is obtained using an accurate and efficient Chebyshev spectral methodology for various of Rayleigh number from $10^3$ to $10^6$. Multi-domain Technique is used to handle heat-generating conducting body. The results for the case of heat-generating body are also compared to those of adaibatic body.

  • PDF

Natural Convection of Air in a Horizontal Annulus with the Inner Cylinder Cooled by Constant Heat Flux (일정 열 유속으로 냉각되는 안쪽 실린더를 갖는 수평 환형 공간에서의 공기의 자연 대류)

  • 유주식;엄용균;김용진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.8
    • /
    • pp.755-762
    • /
    • 2000
  • Natural convection of air in a horizontal annulus with the inner cylinder cooled by the application of a constant heat flux and the isothermally heated outer cylinder is considered. The bifurcation phenomenon of flow patterns and the heat transfer characteristics are numerically investigated. The zero initial condition induces a unicellular flow in a half annulus. A bicellular flow consisting of two counter-rotating eddies in a half annulus can be obtained above a certain critical Rayleigh number. A transition from the bicellular to the unicellular flow occurs with a decrease in Rayleigh number. Hysteresis phenomena have not been observed. In the regime of dual flows, the overall Nusselt number of the bicellular flow is greater than that of the unicellular flow.

  • PDF

Numerical Simulation of Natural Convection in Horizontal Enclosure with Heat-Generating Conducting Body (발열 전도체가 존재하는 밀폐계 내부의 자연대류 현상에 대한 수치적 연구)

  • Lee Jae Ryong;Ha Man Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.4 s.235
    • /
    • pp.441-452
    • /
    • 2005
  • The physical model considered here is a horizontal layer of fluid heated below and cold above with heat-generating conducting body placed at the center of the layer. The dimensionless thermal conductivities of body considered in the present study are 0.01, 1 and 150. The dimensionless temperature difference ratios considered are 0.25, 2.5 and 25. Two-dimensional solution for unsteady natural convection is obtained using an accurate and efficient Chebyshev spectral methodology for variety of Rayleigh number from $10^{3}\;to\;10^{6}.$ Multi-domain technique is used to handle square- shaped heat-generating conducting body. The results for the case of conducting body with heat generation are also compared to those without heat generation.

Energy Stability Analysis on the Onset of Buoyancy-Driven Convection in a Horizontal Fluid Layer Subject to Evaporative Cooling

  • Kim, Min Chan
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.142-147
    • /
    • 2019
  • The onset of buoyancy-driven convection in an initially isothermal and quiescent horizontal fluid layer was analyzed theoretically. It is well-known that at the critical Rayleigh number $Ra_c=669$ convective motion sets in with a constant-heat-flux cooling through the upper boundary. Here, based on the momentary instability concept, the dimensionless critical time ${\tau}_m$ to mark the onset of convective motion for Ra > 669 was analyzed theoretically. The energy method under the momentary stability concept was used to find the critical conditions as a function of the Rayleigh number Ra and the Prandtl number Pr. The predicted critical conditions were compared with the previous theoretical and experimental results. The momentary stability criterion gives more reasonable wavenumber than the conventional energy method.

Laminar Natural Convection Heat Transfer from an Isothermal Rectangular Beam Attached to Horizontal and Vertical Adiabatic Plates (수직 및 수평 단열판에 부착된 등온 사각비임에서의 자연대류 열전달)

  • 박재림;권순석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.95-103
    • /
    • 1992
  • Laminar natural convection heat transfer from an isothermal rectangular beam attached to horizontal and vertical adiabatic plates has been studied for various aspect ratios of the beam and Grashof numbers. The local Nusselt number was increased with decreasing H/B for the constant beam width, B, and with increasing H/B for the constant beam height, H. The total mean Nusselt number of the vertical type was higher than that of horizontal type in the range of H/B.leq.0.52, but reversed in the H/B>0.52 at constant beam width. The total mean Nusselt number of the horizontal type was generally higher than that of vertical type at constant beam height. The total mean Nusselt number of the vertical type was higher than that of horizontal type in the range of H/B.leq.0.43 at constant wetted perimeter, but reversed in the H/B$\leq$0.43.