• Title/Summary/Keyword: horizontal bars

Search Result 103, Processing Time 0.021 seconds

Evaluating Structural Performance of High-Strength Concrete Corbels Containing Steel and Polypropylene Fibers (강섬유 및 폴리프로필렌 섬유로 보강된 고강도콘크리트 내민받침의 구조 거동 평가)

  • Yang, Jun-Mo;Lee, Joo-Ha;Min, Kyung-Hwan;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.747-754
    • /
    • 2008
  • In this study, high strength concrete corbels reinforced with steel fibers and polypropylene fibers, and subjected to the vertical and horizontal loads were constructed and tested. The results showed that performance in terms of load carrying capacities, stiffness, ductility, crack width, and number of cracks was improved, as the steel fibers and polypropylene fibers were added. The polypropylene fiber reinforced concrete corbels resulted in higher ductility in presence of horizontal loads, but showed larger crack width than the steel fiber reinforced concrete corbels. And, the heads of the headed bars provided excellent end anchorage of the main tension tie reinforcement. Experimental results presented in this paper are also compared with various prediction models proposed by codes and researchers. The refined strut-and-tie model showed more accurate and conservative predictions in presence of horizontal loads, and the truss model proposed by Fattuhi provides fairly good predictions for fiber reinforced concrete corbels.

Piezo-electrically Actuated Micro Corner Cube Retroreflector (CCR) for Free-space Optical Communication Applications

  • Lee, Duk-Hyun;Park, Jae-Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.337-341
    • /
    • 2010
  • In this paper, an extremely low voltage operated micro corner cube retroreflector (CCR) was fabricated for free-space optical communication applications by using bulk silicon micromachining technologies. The CCR was comprised of an orthogonal vertical mirror and a horizontal actuated mirror. For low voltage operation, the horizontal actuated mirror was designed with two PZT cantilever actuators, torsional bars, hinges, and a mirror plate with a size of $400{\mu}m{\times}400{\mu}m$. In particular, the torsional bars and hinges were carefully simulated and designed to secure the flatness of the mirror plate by using a finite element method (FEM) simulator. The measured tilting angle was approximately $2^{\circ}$ at the applied voltage of 5 V. An orthogonal vertical mirror with an extremely smooth surface texture was fabricated using KOH wet etching and a double-SOI (silicon-on-insulator) wafer with a (110) silicon wafer. The fabricated orthogonal vertical mirror was comprised of four pairs of two mutually orthogonal flat mirrors with $400{\mu}m4 (length) $\times400{\mu}m$ (height) $\times30{\mu}m$ (thickness). The cross angles and surface roughness of the orthogonal vertical mirror were orthogonal, almost $90^{\circ}$ and 3.523 nm rms, respectively. The proposed CCR was completed by combining the orthogonal vertical and horizontal actuated mirrors. Data transmission and modulation at a frequency of 10 Hz was successfully demonstrated using the fabricated CCR at a distance of approximately 50 cm.

Survey on the Dimension of the Bathroom Equipment for the Korean Elderly (한국 노인에게 적정한 욕실설비 치수에 대한 실험 조사)

  • Ju Seo-Ryeung;Lee Ji-Ye;Kim Min-Kyoung
    • Journal of the Korean housing association
    • /
    • v.17 no.1
    • /
    • pp.165-176
    • /
    • 2006
  • In the design guideline about the existing elderly housing, the equipment related to bathroom are the most important in the secure and functional aspect. On the other hand, the present elderly housing is being designed according to foreign design guideline or common housing form instead of reflecting living and physical qualities of the Korean elderly. Therefore, in this study based on the guideline of the existing literature, we made Mockup furnished with the equipments of bathroom and conducted an experiment in finding proper position and height for Korean elderly enough to use the bathroom conveniently and independently. The equipments of bathroom consist of different height wash bowls, toilet stools, grab bars, and a bathtub. As a result, suitable height of wash bowl is 760 mm $\pm{\alpha}$. We can realized that elderly feel comfortable to grab perpendicular bars of toilet stools more than horizontal ones. So it is necessary for elderly to grip perpendicular of grab bars added to prevention slipping and made shape easy to hold. Most of elderly told us that 500 mm of the bathtub setting is suitable. But many other people feel high. So height of the bathtub must be established lower than 500 mm for safety in the bathroom and for convenience.

A Kinematic Analysis of Glide Kip Motion on the Uneven Bars (이단 평행봉 차오르기 동작의 운동학적 분석)

  • Kim, Seung-Kwon;Kim, Seoung-Eun;Jang, Dae-Sun
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.4
    • /
    • pp.307-318
    • /
    • 2013
  • The purpose of this study was to analyze the kinematic variables of glide kip motion on the uneven bars through a two-dimensional cinematography. Three expert female gymnastics players were involved in the data gathering process. The followings were concluded according to the results. The arm, trunk and leg segments were fully extended throughout the kip movement. The whole body center of gravity showed the biggest changes during 66 to 87% of the kip motion. During the kip phase, the horizontal displacement of the leg was greater than the vertical displacement the leg. Glide kip motion should be done in orders of upward movement of leg, forward movement of leg, upward movement of trunk and forward movement of trunk segment. It was found that trunk segment and hip joint movements showed bigger changes than those of leg segment and shoulder joint in the glide kip motion. The largest angular velocity of hip joint was shown in the middle of the kip Phase. In conclusion, effective kip movement could be resulted when the trunk was displaced posterior-upward direction with fast hip joint extension after the leg segment was elevated upward and thrusted forward in advance.

A new base plate system using deformed reinforcing bars for concrete filled tubular column

  • Park, Yong-Myung;Hwang, Won-Sup;Yoon, Tae-Yang;Hwang, Min-Oh
    • Steel and Composite Structures
    • /
    • v.5 no.5
    • /
    • pp.375-394
    • /
    • 2005
  • An experimental study was conducted to develop a new base plate anchorage system for concrete filled tubular column under an axial load and a moment. The column was connected to a concrete foundation using ordinary deformed reinforcing bars that are installed at the inside and outside of the column. In order to investigate the moment resisting capacity of the system, horizontal cyclic loads are applied until the ultimate condition is reached with the axial load held constant. To derive a design method for moment resisting capacity, the reinforced concrete section approach was investigated with the assumption of strain compatibility. The results by this approach agreeded well with those of experiments when the bearing pressure of confined concrete and tangent modulus of steel bars are assumed appropriately. Also, it was found that the column interaction curve can be used to predict the yield strength of the base plate system.

A Kinematical Analysis of the Kenmotsu on the Parallel Bars (평행봉 Kenmotsu 동작의 운동학적 분석)

  • Kong, Tae-Ung;Kim, Young-Sun;Yoon, Chang-Sun
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.61-70
    • /
    • 2005
  • The purpose of study was to investigate the kinematic variables of Kenmotsu motion in Parallel bars. To this study, by 3 dimensional kinematical analysis of 4 male national gymnasts participants in the 28th Athens Olympic Game in 2004, kinematic data collected using video camera. Coordinate data were smoothed by using a fourth-order Butterworth low pass digital filter with cutoff frequency of 6Hz. The conclusions were as follows. 1. In P2, because the constrained swing movement made the movement of a rising back difficult7, the movements of Reg. were performed at low position after Air phase. 2. In E5 event, for the shake of a stable handstand and applied techniques like a Belle(E-value), a Belle Piked(super E-value), a vertical velocity in E2, a horizontal velocity in E3 and a vertical velocity in E4 were necessary for high velocities. 3. In E4 event, it was appeared that for a flexible body's movement of a vertical up-flight, the large angle of the shoulder joint and the flexion & extension of the hip joint were necessary in Air phase and a long flight time and vertical displacement made Reg. movements stable at the high position.

Evaluation of Reinforcement Detail Effect on Coupling Beams (연결보의 배근 상세 효과 평가)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.2
    • /
    • pp.49-57
    • /
    • 2021
  • A study was conducted to secure structural performance as well as improve workability by improving the reinforcement details of special shear wall and coupling beams. Based on the specimen in which the existing diagonal bundle reinforcement and shear reinforcement were placed, the specimens replaced with thick diagonal reinforcing bars and the specimens replaced with horizontal reinforcing bars were selected as variables. As a result of the experiment, the specimen, which replaced the existing diagonal reinforcement with a thick-diameter reinforcement, showed a similar behavior to that of the basic specimen, and it was evaluated that it can be applied as an alternative to the details.

Experimental Study of Anchor Zone of Externally Prestressed Segmental Bridge (현장 실험을 통한 상판분절 P.C 교량의 정착부 응력 분석)

  • 이성우;배두병;지기환;정남석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.87-94
    • /
    • 1994
  • During the construction of externally prestressed 7-span continuous segmental bridge, cracks beyond permissible limit were found at anchor zone of expansion joint segment. To eliminate this problem, tension side of diaphragm was prestressed by post-tensioning bars in vertical and horizontal direction. To investigate this remedy is acceptable, stresses of reinforcing bars and concrete surface were measured for the real structure in the field. The measurement was performed through each step of prestressing sequence during construction. Also to investigage stresses induced by live load, static load test was performed and the results was analyzed. In this paper it will be presented the procedure and results for this experimental study along with comparison with analytical study.

  • PDF

A Parameter Study of Internally Confined Hollow Reinforced Concrete Piers (내부 구속 중공 RC 교각의 매개변수 연구)

  • Choi, Jun-Ho;Yoon, Ki-Yong;Han, Taek-Hee;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.59-62
    • /
    • 2007
  • The hollow RC(Reinforced concrete) pier has decrease of weight and reduced of materials compared to solid RC pier. However, the hollow RC pier shows a low ductile behavior due to brittle failure of inside concrete. To overcome this problem, the internally confined hollow reinforced concrete column has been developed. In this study, the behavior of internally confined hollow RC piers were evaluated with safety ratio, ductility, total material cost, the total weight of the pier, etc. The chosen parameters for the study are hollow ratio, thickness of internal steel tube, intervals between vertical re-bars, numbers of horizontal re-bars, and strength of concrete.

  • PDF

Load Transfer Test of Spirally Reinforced Anchorage Zone for Banded Tendon Group (나선형 원형철근으로 보강된 집중배치 텐던 정착구역에 대한 하중전달시험)

  • Cho, Ah Sir;Kang, Thomas H.K.
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.1
    • /
    • pp.59-67
    • /
    • 2017
  • In this study, load transfer tests based on KCI-PS101 were conducted to verify the performance of spiral anchorage zone reinforcement for banded post-tensioning (PT) monostrands. With results, the compressive strength of spiral reinforcement was increased by about 20% than that of specimens with two horizontal steel bars and 8% than that of U-shaped bars. Advanced spiral reinforcement for corner increases compressive strength and can resist the spalling forces or fall-out effect at the corner by shear. The ratio of maximum load to amount of steel of the spiral reinforcement is about twice than that of U-shaped reinforcement. With increase of compressive strength capacity and improvement of constructability, the spiral reinforcement is considered to have advantages of promoting the performance of PT anchorage zone compared to conventional methods.