• Title/Summary/Keyword: horizontal and vertical distances

Search Result 78, Processing Time 0.034 seconds

Positional relationship between mandibular third molar and mandibular canal in cone beam computed tomographs

  • Yu, Su-Kyoung;Lee, Ji-Un;Kim, Kyoung-A;Koh, Kwang-Joon
    • Imaging Science in Dentistry
    • /
    • v.37 no.4
    • /
    • pp.197-203
    • /
    • 2007
  • Purpose: To provide diagnostic information by evaluation of the positional relationship between the mandibular third molar and the mandibular canal. Materials and Methods: Eighty-nine mandibular third molars were classified as mesioangular, horizontal, vertical, distoangular groups. The distances between the mandibular third molar and the mandibular canal were measured in cone-beam computed tomographs. The height and width ratios of distances from the mandibular third molar and the mandibular canal to the mandibular inferior border and to the lingual cortical plate were calculated. Results: The vertical and buccolingual distances between the mandibular third molar and the mandibular canal were 0.03 mm, 2.96 mm in the mesioangular, 0.37 mm, 3.38 mm in the horizontal, -1.50 mm, 1.38 mm in the vertical, -1.10 mm, 4.20 mm in the distoangular group. There were significant differences in vertical (P < 0.05), but not in buccolingual (P>0.05). The height and width ratios of distances on the mandibular third molar were 47.1 %, 36.1 % in the mesioangular, 47.4%, 34.4% in the horizontal, 37.0%, 46.7% in the vertical, 40.9%, 37.4% in the distoangular group. There were significant differences between the mesioangular and the vertical group, and the horizontal and the vertical group in height ratio (P < 0.05), and also between the mesioangular and the vertical group in width ratio (P < 0.05). The height and width ratios of distances on the mandibular canal showed no significant differences between groups (P > 0.05). Conclusion : The mesioangular group showed the nearest distance between the mandibular third molar and the mandibular canal vertically. The root apex of the mandibular third molar was positioned more buccally in the vertical group than in the mesioangular group.

  • PDF

Comparison of Effects Between Modified Vertical Roll Sling and Bobath Roll Sling in Hemiplegic Shoulder Subluxation

  • Kim, Dong-Hyun;Kim, Tack-Hoon;Roh, Jung-Suk;Cynn, Heon-Seock;Choi, Houng-Sik;Oh, Dong-Sik
    • Physical Therapy Korea
    • /
    • v.15 no.4
    • /
    • pp.64-69
    • /
    • 2008
  • The purpose of this study was to compare the effectiveness of modified vertical roll sling and conventional Bobath roll sling in reducing hemiplegic shoulder subluxation. Radiography of $40^{\circ}$ anterior oblique radiographic view' were taken, before and immediately after wearing each sling in 13 hemiplegic patients. The vertical distance. horizontal distance. and joint distance were measured. Analysis of radiographically measured distances showed that both modified vertical roll sling and Bobath roll sling decreased vertical, horizontal. and joint distances. Reduction in vertical and joint distances were significantly greater in modified vertical roll sling compared to Bobath roll sling. while horizontal distance showed no significant difference between the two slings. Therefore it can be concluded that modified vertical roll sling is an effective orthosis in reducing hemiplegic shoulder subluxation.

  • PDF

A Study on the Evaluation of Horizontal, Vertical, Asymmetric and Coupling Multipliers of the NIOSH Lifting Equation in Korean Male (한국인 20대 남성의 NIOSH Lifting Equation 계수평가에 관한 연구)

  • Bae, Dong-Chul;Kim, Yong-Jae
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.83-88
    • /
    • 2009
  • The objective of this paper was to evaluate the effectiveness of horizontal, vertical, asymmetric and coupling multipliers for manual material handling. Lifting tasks with 5 different horizontal distances ($30{\sim}70cm$) for 6 vertical distances(ankle, knee, waist, elbow, shoulder and head height) were experimented. The muscle activity and muscle exertion level during asymmetric load handling(without trunk flexion) was experimented. Lifting tasks with and without handle tote box for three postures(straight, bending, right angle posture) were experimented. The degrading tendency did not appeared almost in $60{\sim}70cm$ interval's horizontal distance. As a result of ANOVA, MVC paid attention to horizontal and vertical distance but cross effect was insignificant(p<0.01). The change of the MVC according to the horizontal, vertical distance appeared similar from of RWL. The results of normalized MVC measurement were decreased about 16%, 24%, 34% respectively as the asymmetry angle was $30^{\circ}$, $60^{\circ}$, $90^{\circ}$. RMS EMG values of right erector spinae muscles were decreased as the work posture went to $90^{\circ}$ and those of left erector spinae muscles were increased until the asymmetry angle was $40^{\circ}$ but decreased continually over $40^{\circ}$. 7 subjects, activities of left and right latissimus dorsi muscles were maintained constantly, while for remainer, those were irregular. MVC reduced maximum 23% by type of handle. MVC was highest in straight posture, but was lowest in right angle posture. As a result of ANOVA, MVC paid attention to posture, coupling(p<0.01). To all handle types, biceps brachii activity was increased in right angle posture, but reduced in straight posture. Based on the results of this study, it is suggested that the NIOSH guideline should not be directly applied to Korean without reasonable reexamination. In addition, we need to afterward study through an age classification.

A Study on Simultaneous Adjustment of GNSS Baseline Vectors and Terrestrial Measurements

  • Nguyen, Dinh Huy;Lee, Hungkyu;Yun, Seonghyeon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.5
    • /
    • pp.415-423
    • /
    • 2020
  • GNSS (Global Navigation Satellite System) is mostly used for high-precise surveys due to its accuracy and efficiency. But this technique does not always fulfill the demanding accuracy in harsh operational environments such as urban canyon and forest. One of the remedies for overcoming this barrier is to compose a heterogeneous surveying network by adopting terrestrial measurements (i.e., distances and angles). Hence, this study dealt with the adjustment of heterogeneous surveying networks consisted of GNSS baseline vectors, distances, horizontal and vertical angles with a view to enhancing their accuracy and so as to derive an appropriate scheme of the measurement combination. Reviewing some technical issues of the network adjustments, the simulation, and experimental studies have been carried out, showing that the inclusion of the terrestrial measurements in the GNSS standalone overall increased the accuracy of the adjusted coordinates. Especially, if the distances, the horizontal angles, or both of them were simultaneously adjusted with GNSS baselines, the accuracy of the GNSS horizontal component was improved. Comparing the inclusion of the horizontal angles with those of the distances, the former has been more influential on accuracy than the latter even though the same number of measurements were employed in the network. On the other hand, results of the GNSS network adjustment together with the vertical angles demonstrated the enhancement of the vertical accuracy. As conclusion, this paper proposes a simultaneous adjustment of GNSS baselines and the terrestrial measurements for an effective scheme that overcomes the limitation of GNSS control surveys.

Combustion Characteristics of Coal Particle Array (미분탄 입자들의 배열에 따른 연소특성)

  • Cho, Chong-Pyo;Kim, Ho-Young;Chung, Jin-Taek
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.117-123
    • /
    • 2004
  • The burning characteristics of interacting coal particles in a convective flow are numerically investigated at various Reynolds numbers. The transient combustion of 2-dimensionally arranged particles, both the fixed particle distances of 5 radii to 20 radii horizontally and 3 radii to 24 radii vertically, is studied. The results obtained from the present numerical analysis reveal that the transient flame configuration and retardation of particle temperature augmentation with the horizontal or vertical particle spacing substantially influence devolatilization process and carbon conversion ratio of interacting particles. Volatile release and carbon conversion ratio of the second particle with decreasing horizontal and vertical particle spacing decrease gradually, whereas those of the first particle with decreasing vertical particle spacing increases due to flow acceleration. When the vertical particle spacing is smaller than $6R_{o}$, volatile release and carbon conversion ratio of the second particle decrease greatly due to reduction of flame penetration depth.

  • PDF

Wake effects of an upstream bridge on aerodynamic characteristics of a downstream bridge

  • Chen, Zhenhua;Lin, Zhenyun;Tang, Haojun;Li, Yongle;Wang, Bin
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.417-430
    • /
    • 2019
  • To study the wake influence of an upstream bridge on the wind-resistance performance of a downstream bridge, two adjacent long-span cable-stayed bridges are taken as examples. Based on wind tunnel tests, the static aerodynamic coefficients and the dynamic response of the downstream bridge are measured in the wake of the upstream one. Considering different horizontal and vertical distances, the flutter derivatives of the downstream bridge at different angles of attack are extracted by Computational Fluid Dynamics (CFD) simulations and discussed, and the change in critical flutter state is further studied. The results show that a train passing through the downstream bridge could significantly increase the lift coefficient of the bridge which has the same direction with the gravity of the train, leading to possible vertical deformation and vibration. In the wake of the upstream bridge, the change in lift coefficient of the downstream bridge is reduced, but the dynamic response seems to be strong. The effect of aerodynamic interference on flutter stability is related to the horizontal and vertical distances between the two adjacent bridges as well as the attack angle of incoming flow. At large angles of attack, the aerodynamic condition around the downstream girder which may drive the bridge to torsional flutter instability is weakened by the wake of the upstream bridge, and the critical flutter wind speed increases at this situation.

Interaction of burning droplets with internal circulation (내부순환유동을 고려한 연소하는 액적들의 상호작용)

  • Cho, Chong-Pyo;Kim, Ho-Young;Chung, Jin-Taek
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.183-191
    • /
    • 2004
  • The burning characteristics of interacting droplets with internal circulation in a convective flow are numerically investigated at various Reynolds numbers. The transient combustion of 2-dimensionally arranged droplets, both the fixed droplet distances of 5 radii to 40 radii horizontally and 4 radii to 24 radii vertically, is studied. The results obtained from the present numerical analysis reveal that the transient flame configuration and retardation of droplet internal motion with the horizontal or vertical droplet spacing substantially influence lifetime of interacting droplets. At a low Reynolds number, lifetime of the two droplets with decreasing horizontal droplet spacing increases monotonically, whereas their lifetime with decreasing vertical droplet spacing decreases due to flow acceleration. This flow acceleration effect is reversed when the vertical droplet spacing is smaller than 5 radii in which decreasing flame penetration depth causes the reduction of heat transfer from flame to droplets. At a high Reynolds number, however, lifetime of the first droplet is hardly affected by either the horizontal droplet spacing or flow acceleration effect. Lifetime with decreasing vertical droplet spacing increases due to reduction of flame penetration depth. Lifetime of interacting droplets exhibits a strong dependence on Reynolds number, the horizontal droplet spacing and the vertical droplet spacing and can be con-elated well with these conditions to that of single burning droplet.

  • PDF

The Method to Calculate the Walking Energy-Weight in ERAM Model to Analyze the 3D Vertical and Horizontal Spaces in a Building (3차원 수직·수평 건축공간분석을 위한 ERAM모델의 보행에너지 가중치 산정 연구)

  • Choi, Sung-Pil;Choi, Jae-Pil
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.6
    • /
    • pp.3-14
    • /
    • 2018
  • The aim of this study is to propose a method for calculating the weight of walking energy in ERAM model by calculating it for the analysis of vertical and horizontal spaces in a building. Conventional theories on the space analysis in the field of architectural planning predict the pedestrian volume of network spaces in urban street or in two-dimensional plane within a building, however, for vertical and horizontal spaces in a building, estimates of the pedestrian volume by those theories are limited. Because in the spatial syntax and ERAM model have been applied weights such as the spatial depth, adjacent angles, and physical distances available only to the two-dimensional same layer or plane. Therefore, the following basic assumptions and analysis conditions in this study were established for deriving a predictor of pedestrian volume in vertical and horizontal spaces of a building. The basic premise of space analysis is not to address the relationship between the pedestrian volume and the spatial structure itself but to the properties of spatial structure connection that human beings experience. The analysis conditions in three-dimensional spaces are as follows : 1) Measurement units should be standardized on the same scale, and 2) The connection characteristics between spaces should influence the accessibility of human beings. In this regard, a factor of walking energy has the attributes to analyze the connection of vertical and horizontal spaces and satisfies the analysis conditions presented in this study. This study has two implications. First, this study has shown how to quantitatively calculate the walking energy after a factor of walking energy was derived to predict the pedestrian volume in vertical and horizontal spaces. Second, the method of calculating the walking energy can be applied to the weights of the ERAM model, which provided the theoretical basis for future studies to predict the pedestrian volume of vertical and horizontal spaces in a building.

Measurement of mandibular lingula location using cone-beam computed tomography and internal oblique ridge-guided inferior alveolar nerve block

  • Jang, Ho-Yeol;Han, Seung-Jung
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.45 no.3
    • /
    • pp.158-166
    • /
    • 2019
  • Objectives: Inferior alveolar nerve block (IANB) is the most frequently used treatment for mandibular molars. Successful IANB requires insertion of the dental needle near the mandibular foramen. In this study, we aimed to analyze the anatomic location of the mandibular lingula and evaluate the effects of internal oblique ridge (IOR)-guided IANB. Materials and Methods: The location of the mandibular lingula was measured using cone-beam computed tomography images of the mandibles obtained from 125 patients. We measured the distances from the occlusal plane to the lingula and from the IOR to the lingula in 250 mandibular rami. Based on the mean of these distances, alternative anesthesia was carried out on 300 patients, and the success rate of the technique was evaluated. Results: The mean vertical distance was $8.85{\pm}2.59mm$, and the mean horizontal distance was $14.68{\pm}1.44mm$. The vertical (P<0.001) and the horizontal (P<0.05) distances showed significant differences between the sex groups. The success rate of the IOR-guided technique was 97.3%. Conclusion: IANB-based location of mandibular lingula showed a high success rate. From this study, we concluded that analysis of the anatomic locations for mandibular lingula and IOR-guided IANB are useful for restorative and surgical dental procedures of the mandibular molars.

Estimations of Spatial Variability of Cone Resistance Using Geostatistical Method (지구통계학적 기법을 이용한 콘저항치의 공간적 변화의 평가)

  • ;Michael, W. O'Neill
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.19-34
    • /
    • 1997
  • Applications of geostatistical method to cone penetrometer data have been performed at the overconsolidated clay site. Randomlylocated 28 electronic CPT soundings (Location A) and consistently-located 38 CPT soundings(Location B) are investigated geostatistically. Variograms for Locations A and B have been developed for q, from the CPT data by using "kriging" principles, which establish the horizontal and vertical correlation distrances at this site. These vertical and horizontal correlation distances can be used to optimal sampling design, where, if one needs to compare two test results, sampling must be made within these vertical and horizontal correlation distances. Analysis of the variograms indicated that the geological formation between two locations are not very different in both vertical direction and horizontal direction.direction.

  • PDF