• Title/Summary/Keyword: hoop

Search Result 342, Processing Time 0.027 seconds

Uncertainty effects of soil and structural properties on the buckling of flexible pipes shallowly buried in Winkler foundation

  • Khemis, Asma;Chaouche, Abdelmadjid Hacene;Athmani, Allaeddine;Tee, Kong Fah
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.739-759
    • /
    • 2016
  • The failure of civil engineering systems is a consequence of decision making under uncertain conditions. Generally, buried flexible pipes are designed for their transversal behavior to prevent from the important failure mode of buckling. However, the interaction effects between soil and pipe are neglected and the uncertainties in their properties are usually not considered in pipe design. In this regard, the present research paper evaluates the effects of these uncertainties on the uncertainty of the critical buckling hoop force of flexible pipes shallowly buried using the subgrade reaction theory (Winkler model) and First-Order Second-Moment (FOSM) method. The results show that the structural uncertainties of the studied pipes and those of the soil properties have a significant effect on the uncertainty of the critical buckling hoop force, and therefore taking into account these latter in the design of the shallowly flexible pipes for their buckling behavior is required.

Size effect on tensile strength of filament wound CFRP composites (필라멘트 와인딩 탄소섬유 복합재의 인장강도 크기 효과)

  • Hwang, T.K.;Doh, Y.D.;Kim, H.G.
    • Composites Research
    • /
    • v.24 no.5
    • /
    • pp.1-8
    • /
    • 2011
  • This paper presents the results of theoretical analysis and experimental test to show the size effect on the fiber strength of filament would pressure vessel. First, a series of fully scaled hoop ring tests with filament would carbon-epoxy were conducted, which exhibited a remarkable size effect on the fiber strength. Next, the failure analyses using WWLM(Weibull Weakest Link Model) and the SMFM(Sequential Multi-step Failure Model) were performed and compared to the hoop ring test data, as well as to unidirectional specimens test data from the literature. It was found that the analysis results significantly underestimated the fiber strengths compared to the test data. In this study, a modified SMFM was proposed through the modification of the length size effect. The fiber strengths from modified SMFM analysis showed good agreement with the test data.

The Effects of Geometrical Shape and Post Weld Treatment on Welding Residual Stress Distribution of Weldment in Multi-pass Welded Pipe (다층용접배관의 용접부 잔류음력분포에 대한 기하학적형상과 용접후처리의 영향)

  • 김철한;조선영;김복기;배동호
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.49-57
    • /
    • 2001
  • In this study, the residual stress fields of multi-pass welded were analyzed by FEA under various geometrical conditions. In order to estimate the effects of pipe geometries on residual stress distribution, welding processes of each model were performed under the same heat cycles. And then, the influence of cutting off the weld bead on the residual stress redistribution was also estimated. From the results, in the range of t/D=0.05, axial residual stresses on the outer surface of the welded pipe were linearly decreased with pipe diameter increase. On the other hand, hoop residual stresses were not influenced by them. And both axial and hoop residual stresses on the outer surface of the welded pipe were increased with pipe diameter increase. But, when t/D was smaller than 0.05, they were converged in the nearly same value. The maximum residual stresses were generated at around HAZ. It in therefore necessary to consider them in welding design, strength evaluation, and analysis of fracture characteristics.

  • PDF

Effect of FRP composites on buckling capacity of anchored steel tanks

  • Al-Kashif, M.A.;Ramadan, H.;Rashed, A.;Haroun, M.A.
    • Steel and Composite Structures
    • /
    • v.10 no.4
    • /
    • pp.361-371
    • /
    • 2010
  • Enhancement in the seismic buckling capacity of steel tanks caused by the addition of fiber reinforced polymers (FRP) retrofit layers attached to the outer walls of the steel tank is investigated. Three-dimensional non-linear finite element modeling is utilized to perform such analysis considering non linear material properties and non-linear large deformation large strain analysis. FRP composites which possess high stiffness and high failure strength are used to reduce the steel hoop stress and consequently improve the tank capacity. A number of tanks with varying dimensions and shell thicknesses are examined using FRP composites added in symmetric layers attached to the outer surface of the steel shell. The FRP shows its effectiveness in carrying part of the hoop stresses along with the steel before steel yielding. Following steel yielding, the FRP restrains the outward bulging of the tank and continues to resist higher hoop stresses. The percentage improvement in the ultimate base moment capacity of the tank due to the addition of more FRP layers is shown to be as high as 60% for some tanks. The percentage of increase in the tank moment capacity is shown to be dependent on the ratio of the shell thickness to the tank radius (t/R). Finally a new methodology has been explained to calculate the location of Elephant foot buckling and consequently the best location of FRP application.

A STUDY ON THE INITIAL CHARACTERISTICS OF DOMESTIC SPENT NUCLEAR FUELS FOR LONG TERM DRY STORAGE

  • Kim, Juseong;Yoon, Hakkyu;Kook, Donghak;Kim, Yongsoo
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.377-384
    • /
    • 2013
  • During the last three decades, South Korean nuclear power plants have discharged about 5,950 tons of spent fuel and the maximum burn-up reached 55 GWd/MTU in 2002. This study was performed to support the development of Korean dry spent fuel storage alternatives. First, we chose V5H-$17{\times}17$ and KSFA-$16{\times}16$ as representative domestic spent fuels, considering current accumulation and the future generation of the spent fuels. Examination reveals that their average burn-ups have already increased from 33 to 51 GWd/MTU and from 34.8 to 48.5 GWd/MTU, respectively. Evaluation of the fuel characteristics shows that at the average burn-up of 42 GWd/MTU, the oxide thickness, hydrogen content, and hoop stress ranged from $30{\sim}60{\mu}m$, 250 ~ 500 ppm, and 50 ~ 75 MPa, respectively. But when burn-up exceeds 55 GWd/MTU, those characteristics can increase up to 100 ${\mu}m$, 800 ppm, and 120 MPa, respectively, depending on the power history. These results demonstrate that most Korean spent nuclear fuels are expected to remain within safe bounds during long-term dry storage, however, the excessive hoop stress and hydrogen concentration may trigger the degradation of the spent fuel integrity early during the long-term dry storage in the case of high burn-up spent fuels exceeding 45 GWd/MTU.

Seismic Behavior of SRC Columns with Alternative Hoops by Steel Clip-Type Devices to Improve Constructability of Closed Hoops (폐쇄형 후프의 시공성을 개선하기 위해 강재 클립형 연결장치로 보강한 대체후프를 갖는 SRC기둥의 내진거동 )

  • Kim, Young-joo;Choi, Byong-Jeong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.4
    • /
    • pp.59-70
    • /
    • 2022
  • In SRC column, the closed hoops are applied with the same detail of both 135° standard hooks to expect the same performance as hoops of RC columns. This standard detail is actually complicated to construct, thus, two separating rebars are connected in the form of a square shape and welded over the overlapping section. But this is also complicated in construction practice. Therefore, this study describes experimental results regarding cyclic behaviors shown with alternative hoops cramped by the steel clip type-binding device instead of welding and standard specimen. As a result of the experiment, the specimens with alternative hoops of the SRC column showed comparable performance to the specimens with closed hoops. Therefore, it can be evaluated that the alternative hoops applied with the rebar confinement clips in the SRC column can replace the closed hoop.

Structural Performance Evaluation of Reinforced Concrete Frame and Shear Wall with Various Hoop Ratios of Boundary Column (철근콘크리트 프레임 및 전단벽체의 경계기둥 띠철근비 변화에 따른 구조성능 평가)

  • 신종학;하기주;전찬목
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.303-311
    • /
    • 1998
  • Ten reinforced concrete rigid frames and infilled shear wall frames were tested under both vertical and cyclic loadings. Experiments were carried out to evaluate the structural performance of such test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. under load reversals. All the specimens were modeledin one-third scale size. Based on the test results reported in this study, the follwing conclusions can be made. For the rigid frame type and the fully rigid babel type shear wall specimens, the hysteresis diagrams indicate that the degradations of their strength were developed slowly beyond maximum carrying capacity. It was shown that when the hoop reinforcement ratio became higher, the energy dissipation capacity became larger and the failure mode became ductile. The specimens designed by the less hoop reinforcement for the fully rigid babel type shear wall, were mainly failed due to diagonal crack in comparison with the specimens designed by the larger hoop reinforcement ratio. Maximum horizontal resisting moment capacity of speciment designed by the fully rigid babel shear wall were increased by 5.47~7.95 times in comparison with the rigid frame type.

The effect of neutron irradiation on hydride reorientation and mechanical property degradation of zirconium alloy cladding

  • Jang, Ki-Nam;Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1472-1482
    • /
    • 2017
  • Zirconium alloy cladding tube specimens were irradiated at $380^{\circ}C$ up to a fast neutron fluence of $7.5{\times}10^{24}n/m^2$ in a research reactor to investigate the effect of neutron irradiation on hydride reorientation and mechanical property degradation. Cool-down tests from $400^{\circ}C$ to $200^{\circ}C$ under 150 MPa tensile hoop stress were performed. These tests indicate that the irradiated specimens generated a smaller radial hydride fraction than did the unirradiated specimens and that higher hydrogen content generated a smaller radial hydride fraction. The irradiated specimens of 500 ppm-H showed smaller ultimate tensile strength and plastic strain than those characteristics of the 250 ppm-H specimens. This mechanical property degradation caused by neutron irradiation can be explained by tensile hoop stress-induced microcrack formation on the hydrides in the irradiation-damaged matrix and subsequent microcrack propagation along the hydrides and/or through the matrix.

Design of Cold Extrusion Dies using Flexible Tolerance Method (플렉시블 허용오차법에 의한 냉간압출 금형설계)

  • Yeo H. T.;Choi Y.;Hur K. D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.170-173
    • /
    • 2001
  • The design for cold extrusion dies is very important because the die insert is subjected to very high radial and hoop stresses. The design of cold extrusion dies has many constrained conditions. In this paper, two assumptions were proposed. First assumption was selected by yielding strength dependent on the to hoop stress of each ring in dies. Second assumption is that the maximum inner pressure is determined when yielding occurs in one ring of dies. To obtain the maximum inner pressure the flexible tolerance method was applied. A comparison of design values between the proposed method and the conventional method has been discussed.

  • PDF

Finite Element Analyses of Stamping Tact Spring and Operation of Tact Switch (택트 스프링 타발과 택트 스위치 작동의 유한요소해석)

  • 엄경근;이세형;오규환;이동녕
    • Transactions of Materials Processing
    • /
    • v.4 no.1
    • /
    • pp.17-27
    • /
    • 1995
  • The tact switch is widely used in electric and electronic products. The dome type tact spring is produced by stamping. Stamping of the tact spring and operation of the tact switch have been simulated by the elasto-plastic finite element method. The operating characteristics of the switch may be given by the relation between the operating force and stroke. For a given material, this is affected by two main factors. One is the geometry of dome spring which is determined by the geometry of stamping dies and the stamping pressure, and another one is the dimension of switch. From the calculation, it was possible to obtain the stamping conditions and switch dimension for a predetermined force-stroki relation And, the hoop stresses and effective strains distributions due to the stamping and during the operation of the switch indicate a possibility of cracking in the center and rim of dome spring.

  • PDF