최근 드론, 액션캠 등과 같은 촬영 장비의 활성화로 다양한 전역 움직임을 내포한 영상들이 많이 생성되고 있다. 이때 회전, 확대, 축소 등의 움직임이 발생한 경우, 2D motion vector를 활용하는 기존의 화면 간 예측 방법은 높은 부호화 효율을 기대하기 어렵다. 본 논문에서는 전역 움직임을 homography 참조 픽처를 통해 반영한 비디오 부호화 방법을 제안한다. 제안방법으로, 1) 현재 픽처와 참조 픽처간 전역 움직임 관계를 homography로 파악하여 새로운 참조 픽처를 생성하는 방법, 2) homography 참조 픽처를 화면 간 예측에 활용하는 방법이 있다. 실험은 HEVC 참조 소프트웨어인 HM 14.0에 적용하였고, 실험결과 RA 기준 6.6% 부호화 효율이 증가했다. 특히, 회전 전역 움직임을 지니는 영상을 이용한 실험 결과에서는 기존대비 최대 32.6%의 부호화 효율이 증가하는 결과를 나타내어, 드론과 같이 복잡한 전역 움직임이 자주 나타나는 비디오에서 높은 효율을 보일 수 있을 것으로 기대된다.
This paper presents a robust method for ground plane detection in vision-based applications based on a monocular sequence of images with a non-stationary camera. The proposed method, which is based on the reliable estimation of the homography between two frames taken from the sequence, aims at designing a practical system to detect road surface from traffic scenes. The homography is computed using a feature matching approach, which often gives rise to inaccurate matches or undesirable matches from out of the ground plane. Hence, the proposed homography estimation minimizes the effects from erroneous feature matching by the evaluation of the difference between the predicted and the observed matrices. The method is successfully demonstrated for the detection of road surface performed on experiments to fill an information void area taken place from geometric transformation applied to captured images by an in-vehicle camera system.
본 논문에서는 고해상도 영상에서 호모그래피를 효율적으로 추정하는 방법을 제안하였다. 호모그래피를 정확하게 추정하는 것은 영상 정합 기술에서 가장 중요한 부분이다. 하드웨어의 급속한 발전으로 고해상도 영상을 쉽게 취득 할 수 있게 되었지만, 데이터의 크기가 증가함에 따라 정확한 일치관계를 추정하는데 많은 계산량이 요구되었다. 또한, 고해상도의 영상에서 확률적으로 부정확한 호모그래피가 추정되는 문제가 발생하였다. 따라서 우리는 원 영상을 각 스케일별로 다운 샘플링한 다수의 영상을 생성하여 각 다운 샘플링된 영상에 해당하는 호모그래피를 추정한 후 투영 오차가 가장 작은 것을 선택하여 원 영상에 적용할 수 있게 보정할 수 있는 방법을 제안하였다. 또한, 영상을 정합하는 과정에서 기준 영상과 대상 영상의 색상 톤의 차이가 큰 경우에는 중첩영역의 지역 정보만을 이용하여 기준 영상과 대상 영상의 색상 톤을 일치시키는 방법을 제안하였다. 실험 결과 기존의 방법보다 3.2M 픽셀의 해상도 영상에서 약 3배, 8M 픽셀의 해상도 영상에서 약 5배 이상 빠른 결과를 얻을 수 있음을 확인하였다. 이는 입력 영상의 해상도가 커질수록 제안한 방법의 효과가 더 커진다는 것을 보여준다.
증강현실 분야에서 호모그래피(Homography)를 이용한 비마커 기반의 객체 추적 기술(Markerless tracking)은 카메라의 방향, 위치를 파악하여 실세계의 영상에 가상의 객체를 정확하고 자연스럽게 증강할 수 있는 기술이다. 이와 같은 호모그래피를 추정하기 위한 방법으로 RANSAC 알고리즘이 많이 사용되고 있으며, 최근 기존의 RANSAC 알고리즘에 제약 조건 문제(Constraint Satisfaction Problem)를 적용하여 정확도를 향상시키고, 처리시간을 줄인 CS-RANSAC 알고리즘에 대한 연구가 진행되고 있다. 하지만 CS-RANSAC 알고리즘은 샘플링 단계에서 정확도가 낮은 호모그래피를 추정하게 하는 특징점이 선택되어 불필요한 연산으로 인해 알고리즘의 효율성이 저하되는 경우가 있다. 따라서 본 논문에서는 효과적인 평면 호모그래피 추정을 위한 CS-RANSAC 기반의 특징점 필터링 방법을 제안한다. 제안하는 방법은 호모그래피 평가 단계에서 Symmetric Transfer Error로 정확도가 높은 호모그래피를 추정하게 하는 특징점인지를 평가하고 불필요한 특징점들을 다음 샘플링 단계에서 제외함으로써 정확도를 향상키고 처리시간을 줄였다. 제안하는 CS-RANSAC 기반의 특징점 필터링 방법의 성능평가를 위하여 제안하는 방법을 적용한 알고리즘과 기존의 RANSAC 알고리즘, CS-RANSAC 알고리즘의 수행시간과 오차율(Symmetric Transfer Error), 참정보 포함비율을 비교하였다. 실험 결과 본 논문에서 제안한 방법이 기존 CS-RANSAC 알고리즘보다 수행시간이 평균적으로 약 5% 단축되었고 오차율은 약 14% 줄어들어 더욱 정확한 호모그래피를 추정 할 수 있게 되었다.
증강현실은 카메라로 촬영하고 있는 영상에 가상의 객체를 실시간으로 합성하여 가상의 객체가 현실에 존재하는 것처럼 보이게 하는 기술이다. 증강현실에서 현실에 존재하는 물체에 가상의 물체를 증강하기 위해서는 현실에 존재하는 물체의 위치와 방향을 정확하게 추정해야 하는데, 이 때 활용되는 기술이 영상의 호모그래피(Homography) 이다. 이러한 호모그래피는 영상의 특징점 좌표에 RANSAC 알고리즘을 적용하여 추정할 수 있는데, RANSAC 알고리즘을 이용한 호모그래피 추정 방식은 호모그래피를 추정하고자하는 물체 이외의 배경에 특징점이 많을 경우 정확한 호모그래피를 추정할 수 없다는 문제점이 존재했다. 본 논문에서는 호모그래피를 추정하고자하는 물체가 가까이에 있고 배경이 상대적으로 멀리 위치해있을 때 영상 각 픽셀의 거리 값을 알 수 있는 깊이 영상을 활용하면 물체와 배경을 쉽게 분리할 수 있다는 점을 이용하여 배경의 특징점을 필터링하는 방법을 제안한다. 이를 위하여 본 논문에서는 흑백조 영상인 깊이 영상을 Otsu 알고리즘을 이용하여 사용자와 거리가 가까운 영역과 거리가 먼 영역으로 이진화하고, RGB 영상에서 추출된 특징점 중에서 거리가 먼 영역에 위치한 특징점을 제거함으로써 특징점을 활용한 호모그래피 추정 결과를 향상시킨다. 이러한 방법을 기존의 호모그래피 추정 방법에 적용한 결과 수행시간이 71.7% 단축되었으며, RANSAC 알고리즘의 반복 횟수가 69.4% 줄어들었고, 참정보 비율이 16.9% 증가하였다.
This paper proposes an object tracking system based on keypoints using homography in mobile environments. The proposed system is based on markerless tracking, and there are four modules which are recognition, tracking, detecting and learning module. Recognition module detects and identifies an object to be matched on current frame correspond to the database using LSH through SURF, and then this module generates a standard object information. Tracking module tracks an object using homography information that generate by being matched on the learned object keypoints to the current object keypoints. Then update the window included the object for defining object's pose. Detecting module finds out the object based on having the best possible knowledge available among the learned objects information, when the system fails to track. The experimental results show that the proposed system is able to recognize and track objects with updating object's pose for the use of mobile platform.
Yoon Yong In;Choi Jong Soo;Kwon Jun sik;Kwon Oh Keun
대한전자공학회:학술대회논문집
/
대한전자공학회 2004년도 학술대회지
/
pp.804-809
/
2004
It is essential to calibrate a camera in order to recover 3-dimensional reconstruction from uncalibrated images. This paper proposes a new technique of the camera calibration using a homography between the planar patterns image taken by the camera, which is located at the three planar patterns image. Since the proposed method should be computed from the homography among the three planar patterns from a single image, it is implemented more easily and simply to recover 3D object than the conventional. Experimental results show the performances of the proposed method are the better than the conventional. We demonstrate the examples of 3D reconstruction using the proposed algorithm from image sequence.
자동차를 위한 전방향(omnidirectional) 감시 시스템, 교통 정보 수집 시스템 등 다양한 비젼 시스템에 카메라가 장착되어 사용되고 있다. 최근에는 운전자의 편의를 위하여 광각 카메라의 비선형적인 방사 왜곡을 해결하는 왜곡 보정 작업 등의 영상처리 시스템이 많이 발전하여 운전자의 사각지대를 효율적으로 최소화하고 있다. 그러나 기존의 연구에서는 카메라로부터 입력되는 왜곡 영상을 보정하는데에 별도의 H/W인 DSP(Digital Signal Processes) 또는 SOC(System On Chp) 형태의 전용 H/W를 추가하여 임베디드 시스템의 성능을 보완하고 있다. 하지만 위와 같은 별도의 H/W를 추가하여 임베디드 시스템의 성능을 보완할 경우 시스템이 복잡해지고 가격이 비싸진다는 단점이 있다. 본 논문에서는 이러한 문제점을 보완하기 위하여 왜곡 보정 알고리즘과 호모그래피(Homography) 알고리즘의 연산량을 감소시켜 임베디드 시스템 환경에서 추가의 H/W 비용없이 왜곡 보정을 수행하는 알고리즘을 제안하고, 제안한 알고리즘을 구현하여 실제 시스템에 적용한 결과를 제시하여 구현 타당성을 검증한다.
최근 다양하게 등장하고 있는 운전자를 위한 보조 장치 중 운전자의 주차를 위해 사용되는 장치들 중 하나인 차량용 카메라는 주로 차량 후방의 번호판 위에 주로 위치하여 운전자의 주차에 도움을 주는 역할에 사용이 되고 있다. 최근에는 이러한 카메라를 이용하여 전 후방 및 좌 우측을 모두 보여주기 위한 AVM(Around View Monitor) 시스템이 개발되었다. 그러나 다수의 카메라를 사용하는 AVM시스템에서 운전자에게 통합된 영상을 제공하기 위해서는 카메라의 방사왜곡보정과 호모그래피(Homography) 알고리즘을 통해 정합하는 과정이 필요하다. 본 논문에서는 호모그래피 과정에서 결과 영상의 품질을 개선하기 위한 방법을 제안한다. 또한, 제안하는 방법을 구현하여 기존의 8DOF(Degree of Freedom)을 사용한 방법과 결과 영상의 품질을 비교함으로써 개선된 영상을 제공할 수 있음을 제시한다.
텔레프레즌스(tele-presence)와 원격조정(tele-operation) 기술은 멀리 떨어진 사용자에게 몰입감이 높은(immersive) 장면이나 모바일 로봇 등의 제어 환경을 제공한다. 본 논문에서는 호모그래피(homography) 정보 기반의 카메라 추적기술을 이용한 텔레프레즌스 시스템이 제안된다. 먼저 카메라가 탑재된 HMD(head mounted display)를 착용한 사용자의 머리 움직임을 카메라 추적기술로 분석한다. 그리고 전방향(omni-directional) 카메라를 장착한 로봇으로부터 입력되는 파노라마 영상에서 사용자의 시야(field of view)에 해당하는 장면을 생성하여 HMD를 통해 디스플레이한다. 사용자의 움직임을 추정하는 과정에서 3차원 평면으로 구성된 공간의 호모그래피 정보를 이용하며, 실제로 측정된 3차원 데이터를 기준으로 마커기반의 ARToolkit을 이용하는 방법과 호모그래피 기반 방법의 정확도를 각각 비교하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.