• Title/Summary/Keyword: homogenization

Search Result 645, Processing Time 0.029 seconds

Finite Element Analysis and Validation for Dimpled Tube Type Intercooler Using Homogenization Method (균질화 기법을 이용한 딤플 튜브형 인터쿨러의 유한요소해석 및 검증)

  • Lee, Hyun-Min;Heo, Seong-Chan;Song, Woo-Jin;Ku, Tae-Wan;Kang, Beom-Soo;Kim, Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.2
    • /
    • pp.153-161
    • /
    • 2009
  • Three-dimensional finite-element methods(FEM) have been used to analyze the thermal stress of an exhaust gas recirculation(EGR) cooler due to thermal and pressure load. Since efficiency and capability of the heat exchanger are mainly dependent on net heat transferring area of the EGR cooler system, the tube inside the system has a numerous dimples on the surface. Thus for finite element analysis, firstly the dimple-typed tube is modeled as a plain element without the dimple, and then the equivalent thermal conductivities and elastic modulus are calculated. This work describes the numerical homogenization procedure of the dimple-typed tube and verifies the equivalent material properties by comparison of a single unit and the actual full model. Finally, the homogenization scheme presented in this study can be efficiently applied to finite element analyses for the thermal stress and deformation behavior of the EGR cooler system with the dimple-typed tube.

Effect of Homogenization Treatment on Magnetic Properties of HDDR Treated Nd-Fe-Ga-Nb-B Alloy (모합금의 균질화처리가 HDDR 처리된 Nd-Fe-Ga-Nb-B 합금의 자기적 특성에 미치는 영향)

  • Yu, J.H.;Lee, S.H.;Kim, D.H.;Lee, D.W.;Kim, B.K.;Choi, M.H.;Kim, Y.D.
    • Journal of Powder Materials
    • /
    • v.16 no.4
    • /
    • pp.285-290
    • /
    • 2009
  • HDDR treated anisotropic Nd-Fe-B powders have been widely used, due to their excellent magnetic properties, especially for sheet motors and sunroof motors of hybrid and electric vehicles. Final microstructure and coercivity of such Nd-Fe-B powders depend on the state of starting mother alloys, so additional homogenization treatment is required for improving magnetic properties of them. In this study, a homogenization treatment was performed at $900\sim1140^{\circ}C$ in order to control the grain size and Nd-rich phase distribution, and at the same time to improve coercivity of the HDDR treated magnetic powders. FE-SEM was used for observing grain size of the HDDR treated powder and EPMA was employed to observe distribution of Nd-rich phase. Magnetic properties were analyzed with a vibrating sample magnetometer.

Analysis of quasi-brittle materials at mesoscopic level using homogenization model

  • Borges, Dannilo C;Pituba, Jose J C
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.221-240
    • /
    • 2017
  • The modeling of the mechanical behavior of quasi-brittle materials is still a challenge task, mainly in failure processes when fracture and plasticity phenomena become important actors in dissipative processes which occur in materials like concrete, as instance. Many homogenization-based approaches have been proposed to deal with heterogeneous materials in the last years. In this context, a computational homogenization modeling for concrete is presented in this work using the concept of Representative Volume Element (RVE). The material is considered as a three-phase material consisting of interface zone (ITZ), matrix and inclusions-each constituent modeled by an independent constitutive model. The Representative Volume Element (RVE) consists of inclusions idealized as circular shapes symmetrically and nonsymmetrically placed into the specimen. The interface zone is modeled by means of cohesive contact finite elements. The inclusion is modeled as linear elastic and matrix region is considered as elastoplastic material. A set of examples is presented in order to show the potentialities and limitations of the proposed modeling. The consideration of the fracture processes in the ITZ is fundamental to capture complex macroscopic characteristics of the material using simple constitutive models at mesoscopic level.

Estimation of In vitro Digestibility of Barley Straw by Using a Homogenized Rumen Fluid and Artificial Saliva Mixed with Nitrogen and Energy Sources

  • Chaudhry, Abdul S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.1
    • /
    • pp.13-16
    • /
    • 1998
  • A $2{\times}2{\times}4$ factorial study was conducted to examine the possibility of improving estimates of in vitro digestibility, using untreated (UBS) and ammonia-treated (ABS) barley straw, through homogenization of rumen fluid (RF) and by additions of urea (U) and casein (C) as N sources and Xylose + Glucose (XG) as energy sources into artificial saliva. Digestibiltiy of ABS was significantly greater than that of UBS (p < 0.001). There was a significant decrease in digestibility when additions (U, UC, UCXG) were compared with the control (p < 0.001). A 2-way interaction between RF and straw type was significant (p < 0.05) for dry matter digestibility (DMD). Homogenization of RF increased DMD of ABS (p < 0.05) whereas it decreased DMD of UBS (p > 0.05). The study showed that addition of N alone or in combination with energy sources was not better than control, rather the reverse, digestion was inhibited by a combination of U and casein (UC). It was concluded that sufficient N and branched chain fatty acids were supplied in the inoculum from sheep fed high protein grass cubes to support the growth of cellulolytic microbes during in vitro incubation. Further studies are, however, required to explore the potential of homogenization in improving the in vitro method to estimate digestibility of cereal straws.

Flavor Compounds of Cholesterol-Reduced Cheddar Cheese Slurries

  • Kwak, H.S.;Chung, C.S.;Ahn, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.1
    • /
    • pp.117-123
    • /
    • 2002
  • This study was carried out to find the difference in flavor compounds between cholesterol-reduced Cheddar cheese slurries and control sample. The cheeses were made by 3 different treatments as followings: 1) Control (no homogenization, no ${\beta}$-CD), 2) Trt A (1,000 psi milk homogenization, 1% ${\beta}$-CD) and 3) Trt B (cream separation following by 10% ${\beta}$-CD, mixed with skim milk at 1,000 psi homogenization). The cholesterol removals of the cheeses were 79.30% (Trt A) and 91.22% (Trt B). The cheese slurries made by the cheeses were aged at $32^{\circ}C$ for 3 wk. The production of short-chain fatty acids (SCFA) was significantly increased with storage time in all treatments. Total amount of SCFA was dramatically increased at 2 wk and maintained thereafter in control group. The amounts of acetone and acetaldehyde were slightly increased in control at 3 wk, however, no difference was found in others. Ethanol production was dramatically increased at 1 wk and decreased thereafter in all treatments. Based on our results, cheese slurries for Trt B showed a highest cholesterol removal rate. Although little difference was found in flavor production, lower amount of SCFA was found in Trts A and B in 2 and 3 wk. It may indicate that a certain amount of SCFA is decreased during ${\beta}$-CD treatment.

Low Cholesterol Mozzarella Cheese Obtained from Homogenized and β-Cyclodextrin-Treated Milk

  • Kwak, H.S.;Nam, C.G.;Ahn, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.2
    • /
    • pp.268-275
    • /
    • 2001
  • The effects of homogenization conditions and $\beta$-cyclodextrin ($\beta$-CD) on cholesterol removal of Mozzarella cheese were examined. The homogenization pressure influenced markedly on the cholesterol removal in milk and, 75.64% of cholesterol, the highest rate, was removed at $70.0kg/cm^2$. In addition, an increase in temperature resulted in an increase of cholesterol removal in the range of 71.75 to 78.22%. Among different concentrations of $\beta$-CD addition, 1.0% showed 78.21% of cholesterol removal. Therefore, cholesterol-reduced Mozzarella cheese was made by cheese milk treated with 70 $70.0kg/cm^2$ homogenization at $70^{\circ}C$ and 1% $\beta$-CD addition for a subsequent study. The cholesterol reduction of cholesterol-reduced Mozzarella cheese was 63.92%. Meltability, stretchability and oiling-off in cholesterol-reduced cheese were significantly lower than those in control. Hardness, gumminess and chewiness were significantly reduced, while cohesiveness and elasticity increased. Appearance and flavor of the cheese were superior, but texture inferior to the control.

Cholesterol Removal and Flavor Development in Cheddar Cheese

  • Kwak, H.S.;Jung, C.S.;Seok, J.S.;Ahn, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.3
    • /
    • pp.409-416
    • /
    • 2003
  • This study was carried out to find a cholesterol removal rate, flavor development and bitter amino acid productions in Cheddar cheese treated with $\beta$-cyclodextrin (CD): 1) Control (no homogenization, no $\beta$-CD), and 2) Milk treatment (1000 psi milk homogenization, 1% $\beta$-CD). The cholesterol removal of the cheese was 79.3%. The production of short-chain free fatty acids (FFA) increased with a ripening time in both control and milk treated cheese. The releasing quantity of short-chain FFA was higher in milk treated cheese than control at 5 and 7 mo ripening. Not much difference was found in neutral volatile compound production between samples. In bitter-tasted amino acids, milk treatment group produced much higher than control. In sensory analysis, texture score of control Cheddar cheese significantly increased with ripening time, however, that in cholesterol-reduced cheese decreased dramatically. Our results indicated that the cheese made by $\beta$-CD treated milk with low pressure homogenization showed an effective cholesterol reduction and a rapid cheese ripening, while no capture of flavor compounds by $\beta$-CD.

Microstructure and Mechanical Properties in Al-Li-(Be) Alloys. (Al-Li-(Be)합금 주괴의 미세조직과 기계적 성질)

  • Eun, Il-Sang;Cho, Hyun-Kee
    • Journal of Korea Foundry Society
    • /
    • v.10 no.5
    • /
    • pp.417-425
    • /
    • 1990
  • The purpose of this study is to investigate the effect of Be addition on the microstructure and mechanical properties of as-cast and homogenization treated Al-Li-(Be)alloys. The ductility of as-cast Al-Li alloy was increased by the addition of Be and the fracture morphology was changed from brittle to ductile mode. Also, hardness and strength have been decreased by homogenization treatment. The morphology of eutectic structure which consists of ${\alpha}(Al)$ and ${\alpha}(Be)$ was changed from lammellae to spherical type by homogenization treatment. The shape of ${\alpha}(Be)$ phase has been revealed as hollow type by TEM observation. It consists of outer surfaces with well defined crystal facets and the core filled with ${\alpha}(Al)$. The microstructure of as-cast Al-Li-Be alloys showed coarse ${\delta}'$, fine ${\delta}'$, and coarse ${\delta}$ phases. The coarse and fine ${\delta}'$ phases were formed at Be-rich phase /matrix interfaces and in matrix, respectively. By homogenization treatment, the ${\delta}$ phase in Al-Li and Al-Li-Be alloys dissolved and the size of ${\delta}$ phase in Al-Li-Be alloys was finer than that of Al-Li alloy.

  • PDF

A Review of Mean-Field Homogenization for Effective Physical Properties of Particle-Reinforced Composites (평균장 균질화를 이용한 입자 강화 복합재의 유효 물성치 예측 연구 동향)

  • Lee, Sangryun;Ryu, Seunghwa
    • Composites Research
    • /
    • v.33 no.2
    • /
    • pp.81-89
    • /
    • 2020
  • In this review paper, we introduce recent research studied effective physical properties of the reinforced composite using mean-field homogenization. We address homogenization for effective stiffness and expand it to effective thermal/electrical conductivity and dielectric constant. Multiphysics problems like piezoelectricity and thermoelectricity are considered by simplifying the constitutive equation into the linear equations like Hooke's law. We present a generalized theoretical formula for predicting effective physical properties of composite and validation by against finite element analysis.

Effect of Coagulation and Homogenization on the Dissolved Air Flotation and Sedimentation of Bulking Sludge (응집과 균질화가 팽화슬러지의 용존공기부상과 침전에 미치는 영향)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.1 s.94
    • /
    • pp.68-74
    • /
    • 2007
  • The objective of this study is to examine the effect of the coagulation and homogenization in bulking sludge thickening of paper manufacturing plant using DAF(Dissolved Air Flotation) and gravitational sedimentation. The effects of parameters such as dosage of coagulant and homogenization time were examined. The results showed that DAF and sedimentation was affected aluminum sulfate and anion polymer coagulant differently. At the optimum dosage of aluminum sulfate, thickening efficiency of DAF and sedimentation process were increase 1.25 time and 2.02 time, respectively. At the optimum dosage of anion polymer coagulant, thickening efficiency of DAF process was increase 1.35 time, but thickening efficiency at sedimentation was 1.06 time. When anion polymer coagulant of 0.5 mg/l was added in DAF process, water content of sludge was decreased from 96.6% to 90.7% in dewatering process using Buchner funnel test device. After homogenization(20500 rpm, 10 min), Sauter mean diameter of sludge floc was decreased from 631 ${\mu}m$ to 427 ${\mu}m$, however increase of flotation efficiency by DAF was only 1.09 time.