• Title/Summary/Keyword: homogeneous charge compression ignition engine

Search Result 97, Processing Time 0.025 seconds

COMBUSTION STABILITY OF DIESEL-FUELED HCCI

  • Shi, L.;Deng, K.;Cui, Y.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.395-402
    • /
    • 2007
  • Homogeneous Charge Compression Ignition (HCCI) shows great potential for low $NO_x$ emission but is hampered by the problem of no direct method to control the combustion process. Therefore, HCCI combustion becomes unstable easily, especially at lower and higher engine load. This paper presents a method to achieve diesel-fueled HCCI combustion, which involves directly injecting diesel fuel into the cylinder before the piston arrives at top dead center in the exhaust stroke and adjusting the valve overlap duration to trap more high temperature residual gas in the cylinder. The combustion stability of diesel-fueled HCCI combustion and the effects of engine load, speed, and valve overlap on it are the main points of investigation. The results show that: diesel-fueled HCCI combustion has two-stage heat release rate (low temperature and high temperature heat release) and very low $NO_x$ emission, combustion stability of the HCCI engine is worse at lower load because of misfire and at higher load because of knock, the increase in engine speed aids combustion stability at lower load because the heat loss is reduced, and increasing negative valve overlap can increase in-cylinder temperature which aids combustion stability at lower load but harms it at higher load.

Prediction of the Viable Operating Range of DME Heel Engine Using Thermal Stratification Based on Numerical Analysis (온도 성층화를 이용한 DME HCCI 엔진의 운전 영역 확장에 관한 수치해석 연구)

  • Jeong, Dong-Won;Kwon, O-Seok;Back, Young-Soon;Lim, Ock-Taeck
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.4
    • /
    • pp.344-351
    • /
    • 2009
  • A multi-zone model was used to predict the operating range of homogeneous charge compression ignition (HCCI) engine, the boundaries of the operating range were determined by knock (presented by ring intensity), misfire (presented by sensitivity of indicated mean effective pressure to the initial temperature). A HCCI engine fueled with Di-Methyl Ether (DME) was simulated under different initial temperature and equivalence ratios, and the operating range was well produced by the model. Furthermore, the model was applied to develop the operating range for thermal stratification in the preceding condition of initial temperature and equivalence ratios. The computations were conducted using Senkin application of the CHEMKINII kinetics rate code.

Effects of Fuel Composition and Pressure on Autoignition Delay of Biomass Syngas (혼합비율 및 압력 변화가 바이오매스 합성가스의 점화지연 시간에 미치는 영향)

  • Shim, Tae Young;Kang, Ki Joong;Lu, Xingcai;Choi, Gyung Min;Kim, Duck Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.12
    • /
    • pp.945-952
    • /
    • 2015
  • The autoignition characteristics of biosyngas were investigated both numerically and experimentally. The effects of the temperature, gas composition, and pressure on the autoignition characteristics were evaluated. A shock tube was employed to measure the ignition delay times of the biosyngas. The numerical study on the ignition delay time was performed using the CHEMKIN-PRO software to validate the experimental results and predict the chemical species in the combustion process. The results revealed that the ignition delay time increased with an increase in the hydrogen fraction in the mixture. Under most temperature conditions, the ignition delay time decreased with a pressure increase. However, the ignition delay time increased with an increase in pressure under relatively low temperature conditions.

A Study on the Spray Characteristics of Swirl Injector for Use a HCCI Engine using Entropy Analysis and PIV Technique (엔트로피 해석과 PIV를 이용한 HCCI 엔진용 스월 인젝터의 분무 특성 해석에 관한 연구)

  • 안용흠;이창희;이기형;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.39-47
    • /
    • 2004
  • The objective of this study is to analyse the spray characteristics according to the injection duration under ambient pressure condition and to investigate the relationship between vorticity and entropy for controlling diffusion process that is the most important thing during the intake stroke injection process. Therefore, the spray velocity was obtained by using the PIV method that has been an useful optical diagnostics technology, and vorticity calculated from spray velocity component with vorticity algorithm. In addition, the homogeneous diffusion rate of spray was quantified by using the entropy analysis based on the Boltzmann's statistical thermodynamics. From these method, we found that as injection duration increases, spray velocity increases and the location of vortex is moved to the downstream of spray. In the same condition, as the entropy decrease, mean vorticity increases. This means that the concentration of spray droplets caused by the increase of injection duration is more effective than the increase of momentum dissipation.

Potential of Thermal Stratification and Partial Fuel Stratification for Reducing Pressure Rise Rate in HCCI Engines (HCCI 기관에 있어서의 층상 흡기를 통한 압력 상승률 저감에 대한 단위반응 수치 해석)

  • Lim, Ock-Taeck
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.6
    • /
    • pp.21-28
    • /
    • 2009
  • The purpose of this study is to gain a better understanding of the effects of thermal stratification and partial fuel stratification on reducing the pressure-rise rate and emission in HCCI combustion. The engine is fueled with Di-Methyl Ether(DME) which has unique 2-stage heat release. Computational work is conducted with multi-zones model and detailed chemical reaction scheme. Calculation result shows that wider thermal stratification and partial fuel stratification prolong combustion duration and reduce pressure rise rate. But too wide partial fuel stratification increases CO and NOx concentration in exhaust gas, and decreases combustion efficiency.

  • PDF

Study on the Spray Control of Mixed Fuel Using Flash Boiling (감압비등을 이용한 혼합연료의 분무제어에 관한 연구)

  • Myong, Kwang-Jae;Yoon, Jun-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.11
    • /
    • pp.1005-1013
    • /
    • 2010
  • This study was conducted to assess the spray control of flash boiling with mixed fuel in consideration of HCCI (Homogeneous Charge Compression Ignition) engine condition. Mixed fuel existing in two phase regions can control the process of mixture formation under low temperature and density by using the spray resulting from flash boiling which is able to induce rapid evaporation of fuel spray as well as the evaporation of high boiling point component. Because HCCI engine injects the fuel early under ambient conditions, it can facilitate the chemical control of ignition combustion and physical control such as breakup and atomization of liquid fuel by flash boiling of mixed fuel which consists of highly ignitable light oil and highly volatile gasoline. This study was conducted by performing video processing after selected composition and molar fraction of the mixed fuel as major parameters and photographed Schlieren image and Mie scattered light corresponding to the flash boiling phenomenon of the fuel spray that was injected inside a constant volume vessel. It was found that flash boiling causes significant changes in the spray structure under relatively low temperature and density. Thus, we analyzed that the flash boiling spray can be used for HCCI combustion by controlling the mixture formation at the early fuel injection timing.

Reaction Characteristics of Oxidation Catalysts for HCCI Engine (HCCI 엔진용 산화촉매의 반응특성)

  • Park, Sung-Yong;Kim, Hwa-Nam;Choi, Byung-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.165-171
    • /
    • 2010
  • The Homogeneous Charge Compression Ignition (HCCI) engine concept allows for both NOx and particulate matter to be reduced simultaneously, and it is a promising way to meet the next environmental challenges. Unfortunately, HCCI combustion often increases CO and HC emissions. The development of oxidation catalyst (OC) requires high conversion efficiency for CO and HC at low temperature. Conventional oxidation catalyst technologies may not be able to convert these emissions because of the saturation of active catalytic sites. The OC used in this study was 600 cpsi cordierite. Three kinds of OC with different amounts of Pt and Pd were used. The influence of the space velocity (SV), $H_2O$ and $O_2$ concentration was also studied. All types of OCs were found to have over 90% CO conversion efficiencies at $170^{\circ}C$. When in the presence of water vapor, CO conversion was increased, but $C_3H_8$ conversion was decreased. The performance of the OC was not influenced by initial the HC concentration. The 2Pt/Pd catalyst was better in terms of thermal aging than the Pt-only catalyst. The $LOT_{50}$ of both fresh and aged OC was increased with increasing SV and with the presence of $H_2O$.