• Title/Summary/Keyword: hologram

Search Result 680, Processing Time 0.032 seconds

2-dimensional hologram formation by selective etching on amorphous As-Ge-Se-S thin film (비정질 As-Ge-Se-S 박막에서 선택적 에칭을 통한 2차원 홀로그램 제작)

  • Kim, Jin-Hong;Kang, Jin-Won;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1430-1431
    • /
    • 2006
  • We investigated the formation of 2-dimension hologram grating by means of selective etching characteristic and photo-expansion effect according to photo irradiation on amorphous As-Ge-Se-S thin film. By method of phase holography, we made the 2-dimensional hologram grating by each (S:P) and ($+45^{\circ}:-45^{\circ}$) polarized beam with DPSS laser(532nm) and He-Ne laser(632nm). A recording property was observed at each polarized beam through 2-dimensional hologram surface relief grating. Chalcogenide thin film was etched selectively by NaOH solution after the formation of 1-dimensional diffraction grating. And then etched sample was rotated 90 degree to fabricate 2 dimensional hologram grating. We found that it was observed the formation of 2-dimensional hologram grating by AFM(Atomic Force Microscopy).

  • PDF

ATInSAR HOLOGRAM OBSERVATIONS OF COASTAL WAVE REFARCTION

  • Marghany, Maged
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.438-440
    • /
    • 2003
  • This study is introducing a new approach of ATInSAR hologram for modeling wave refraction spectra pattern. TOPSAR data with L$_{-HH}$ and C-vv bands utilized spatial variation of wave refraction. Based on the phase information in along track interferometry, and ATInSAR hologram the quantitative information such swell wave height and spectra energy have been modeled. The phase information in ATInSAR hologram images can be transferred to wave refraction The ATInSAR hologram can be used to investigate the wave refraction pattern along the coastal waters. The fringe information pattern was shown to be useful in modeling wave refaction spectra varaition. The hologram interferometry wave refraction model consists of two sub-models. The purpose of first sub-model is to determine the swell wave height by using ATInSAR. Second sub-model aims to generate the holographic interferometry from the information of two wave spectra which detected by ATInSAR technique. The azimuth cut-off variations along the fringe patterns will be estimated. As azimuth cut-off contains the wave height information which could be used the significant wave height variation in convergence and divergence zone.

  • PDF

Exploring the Effects of Gesture Interaction on Co-presence of a Virtual Human in a Hologram-like System (유사홀로그램 가시화 기반 가상 휴먼의 제스쳐 상호작용 영향 분석)

  • Kim, Daewhan;Jo, Dongsik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.10
    • /
    • pp.1390-1393
    • /
    • 2020
  • Recently, a hologram-like system and a virtual human to provide a realistic experience has been serviced in various places such as musical performance and museum exhibition. Also, the realistically responded virtual human in the hologram-like system need to be expressed in a way that matches the users' interaction. In this paper, to improve the feeling of being in the same space with a virtual human in the hologram-like system, user's gesture based interactive contents were presented, and the effectiveness of interaction was evaluated. Our approach was found that the gesture based interaction was provided a higher sense of co-presence for immersion with the virtual human.

A New Algorithm and High-Performance Hardware Design for 2-Dimensional Parallel Generation of Digital Hologram (디지털 홀로그램의 2차원적인 병렬 생성을 위한 알고리즘 및 고성능 하드웨어 설계)

  • Yang, Wol-Sung;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.1
    • /
    • pp.133-142
    • /
    • 2012
  • In this paper, we propose and implement a high-speed algorithm for CGH that is to calculate digital hologram by modeling the interference phenomenon for tow lights. This algorithm changes the computation equations into a parallel-computable ones and implements it with a structure consisting of two kinds of cells (initial calculation cell, and update calculation cell). The parallel computation algorithm is to get the rest hologram pixels concurrently after calculation the first hologram column. Here, the initial calculation cells compute the first column of the hologram and the update calculation cells compute the rest of the hologram. The two kinds of cells performs a pipeline operation to complete the operations of the two cells at the same time. A CGH calculator to compute the hole hologram for a light source is structured by arranging the two kinds of cells. Results from simulation showed that the maximum operation frequency is about 215MHz. So, experiments are performed by setting this frequency and the same environments as the method showing the best performance. As the results, the proposed one could complete the computation of 81.75 CGH frames per second, while the previous method computes 62.9 CGH frames per second.

A New Architecture of High-Performance Digital Hologram Generator based on Independent Calculation of a Holographic Pixel (독립적 홀로그램 화소 연산 방식의 고성능 디지털 홀로그램 생성기의 하드웨어 구조)

  • Lee, Yoon-Huyk;Seo, Young-Ho;Choi, Hyun-Jun;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.16 no.3
    • /
    • pp.403-415
    • /
    • 2011
  • In this paper, we proposed a hardware architecture to generate digital holograms at high speed. It used the modified computer-generated hologram (CGH) algorithm and adapted the pipeline-based hardware to be able to remove memory bottleneck problem. It uses not the method which generates a hologram by accumulating intermittent holograms but the one which independently generates a pixel of a final hologram and uses the appropriate CGH algorithm for the selected method. Based on the CGH algorithm we proposed the architecture of the digital hologram generator which consists of input interface part, calculating part, and normalizing part. The hardware can decrease memory usage because it repeatedly use object light sources which is stored in the internal buffer. It is also operationally parallelized by vertically adding unit cells. It can generate 86 frames of HD digital hologram per 1 second for 1K light sources.

A Study on the Expressional Characteristics and Elements of Contents Using Hologram (홀로그램을 활용한 콘텐츠의 표현특성 및 요소에 관한 연구)

  • Lim, Jung-Hee;Chung, Jean-Hun
    • Journal of Digital Convergence
    • /
    • v.15 no.4
    • /
    • pp.405-411
    • /
    • 2017
  • The purpose of this study is to identify the visual characteristics of image expression elements of contents based on hologram and to find ways to utilize hologram effectively. Therefore, I intend to analyze the characteristics and cases of hologram, and investigate efficient representation methods of hologram contents. As a research method, I considered the theoretical background of the hologram through the literature investigation and the precedent study related to the hologram technology, and derived the results from the case study analysis. The characteristics of expression of hologram contents are fusion of virtual and physical elements, interaction, visual extension of reality space. It becomes possible to produce scenes that were difficult to visualize, thereby enhancing the interest and immersion of the audience.

Diffraction Efficiency Analysis for Reconstruction of Digital Hologram based on SLM (SLM 기반의 디지털 홀로그램 복원에 대한 회절효율 특성 분석)

  • Seo, Young-Ho;Lee, Yoon-Huck;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.24 no.3
    • /
    • pp.452-462
    • /
    • 2019
  • A digital hologram, which is one of the next generation visual systems, can be generated and displayed in various formats, and a digital hologram is created in accordance with the characteristics of the system for display. Diffraction efficiency can be used as a measure of the characteristics of digital holograms generaged under various conditions in various display environments. In this paper, diffraction efficiency for computer-generated hologram (CGH) under various conditions was measured. This paper discusses the generation conditions that should be considered in hologram display. We compared each condition by measuring the intensity of the first order diffraction pattern of the fringe generated under the Fresnel condition for the phase hologram. Through this paper, we showed the tend about characteristics of the diffraction efficiency according to object point, reconstruction distance, laser and SLM.

System Architecture for Digital Hologram Video Service (디지털 홀로그램의 비디오 서비스를 위한 시스템 설계)

  • Lee, Yoon-Hyuk;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.590-605
    • /
    • 2014
  • The purpose of this paper is to propose a service system for a digital hologram video, which has not been published yet. This system assumes the existing service framework for 2-dimensional or 3-dimensional image/video, which includes data acquisition, processing, transmission, reception, and reconstruction. This system includes acquisition of color and depth image pairs from a image acquisition system with vertical rigs, rectification of acquired image pairs and generating digital hologram. Also it is designed to reduce the CGH (computer-generated hologram) generation time to 1/3. It also includes some additional and optional functions such as watermarking, compression, and encryption.

High-Speed Generation Technique of Digital holographic Contents based on GPGPU (GPGPU기반의 디지털 홀로그램 콘텐츠의 고속 생성 기법)

  • Lee, Yoon Hyuk;Kim, Dong Wook;Seo, Young Ho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.1
    • /
    • pp.151-163
    • /
    • 2013
  • Recently the attention on digital hologram that is regarded as to be the final goal of the 3-dimensional video technology has been increased. Digital hologram is calculated by modeling the interference phenomenon between an object wave and a reference wave. The modeling for digital holograms is called by computer generated hologram (CGH) Generally, CGH requires a very large amount of calculation. So if holograms are generated in real time, high-speed method should be needed. In this paper, we analyzed CGH equation, optimized it for mapping general purpose graphic processing unit (GPGPU), and proposed a optimized CGH calculation technique for GPGPU by resource allocation and various experiments which include block size changing, memory selection, and hologram tiling. The implemented results showed that a digital hologram that has $1,024{\times}1,024$ resolution can be generated during approximately 24ms, using 1K point clouds. In the experiment, we used two GTX 580 GPGPU of nVidia Inc.

Study for the Bragg Detuning Effects on the Transmission Holograms and the Reflection Holograms (투과형 홀로그램과 반사형 홀로그램에서의 Bragg detuning 현상에 대한 연구)

  • Kwon, Yun-Young;Kim, Kun-Yul;Park, Joo-Youn
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.3
    • /
    • pp.189-195
    • /
    • 2006
  • Bragg detuning effect if, one of the serious problems if the photopolymer is used for the recording material of holography memories. And the critical reasons of that are known as the bulk refractive index change and shrinkage of recording material. However, the trials for analyzing the effect are mainly on the K-sphere and biased on the transmission hologram. So, we approached Bragg detuning effect numerically and applied the method to the transmission holograms and the reflection holograms all together. We simulated it with MATLAB. As a result, the bulk refractive index change causes+Bragg detuning effect on the transmission holograms and the reflection holograms. But the shrinkage leads to+Bragg detuning effect on the transmission hologram and-Bragg detuning effect on the reflective hologram. Compared to experimental result, the bulk refractive index change(${\fallingdotseq}4{\times}10^{-4}$) and the ratio of shrinkage to the thickness of the material(${\fallingdotseq}1.67{\times}10^{-3}$) could be matched with Bragg detuning effect on the transmission hologram and the reflection hologram.

  • PDF