• Title/Summary/Keyword: hollow glass sphere

Search Result 12, Processing Time 0.014 seconds

One-Way Shear Strength of Donut Type Biaxial Hollow Slab Considered Hollow Shapes and Materials (중공형상 및 재료의 영향을 고려한 도넛형 이방향 중공슬래브의 일방향 전단강도)

  • Chung, Joo-Hong;Lee, Seung-Chang;Choi, Chang-Sik;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.391-398
    • /
    • 2012
  • This paper presents the shear capacities of biaxial hollow slab with donut type hollow sphere. Recently, various types of slab systems which can reduce self-weight of slabs have been studied for increasing constructions of taller and larger building structures. A biaxial hollow slab system is widely known as one of the effective slab system, which can reduce self-weight of slab. According to previous studies, the hollow slab has low shear strength, compared to solid slab. Also, the shear capacities of biaxial hollow slab are influenced by the shapes and materials of hollow spheres. However, the current code does not provide a clear computation method for the shear strength of hollow slab. To verify the shear capacities of this hollow slab, one-way shear tests were performed. Four test specimens were used for test parameters. One was conventional RC slab and others were hollow slabs. The test parameters included two different shapes and materials of plastic balls. The shape parameters were donut and non-donut forms and the material parameters were general plastic and glass fiber plastic. The results showed that the shear strengths varied depending on hollow shapes and materials used in the slab.

Study on the Underwater Acoustic Properties of Polyurethane Elastomer

  • Shin, Hyun Dai;Ahn, Byung Hyun
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.326-331
    • /
    • 2017
  • Two kinds of polyurethane elastomers were prepared and their acoustical properties underwater investigated. Their dynamic mechanical properties were measured using a dynamic mechanical analyzer. The sound speed and echo reduction in the 1-50 kHz frequency range were calculated from the data obtained using the analyzer. The sound speed, transmission and attenuation cofficient in 300-800 kHz were measured in a water-filled tank. Impedance tube experiments were performed to determine the reflective coefficient and echo reduction in the 3-8 kHz range. The polyurethane elastomer containing a hollow glass sphere showed a lower reflective coefficient and a higher echo reduction than the polyurethane elastomer without a filler.