• Title/Summary/Keyword: hole drilling method

Search Result 184, Processing Time 0.028 seconds

A Study on the Analysis of Residual Stress of STS 304 Weldment Using Hole Drilling Method (구멍뚫기법(HDM)에 의한 STS 304 용접부의 잔류응력 해석에 관한 연구)

  • 고준빈;최원두;이영호
    • Journal of Welding and Joining
    • /
    • v.19 no.6
    • /
    • pp.664-670
    • /
    • 2001
  • The HDM(Hole Drilling Method) is a relatively simple and accurate methods in measuring residual stress of weldment. Various method of evaluating residual stress are studied in welding field. The method of cutting holes on the plate much affects the accuracy of result. Especially for the hard material like stainless which is difficult to cut preciously is difficult to measure residual stress of weldment. Because heat conduction of strainless steel is lower than other general steel, the magnitude of residual stress might be different as to changing of welding conditions. Therefore, the distribution of residual stress on the STS304 steel after welding using HDM is evaluated in this paper.

  • PDF

Determination of Residual-Stress Distribution in Engineering Plastics (공업용 플라스틱 성형품에 대한 잔류응력의 측정)

  • Kim, Chae-Hwan;Youn, Jae-Ryoun
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.132-135
    • /
    • 2006
  • Injection molding is a flexible production technique for the manufacturing of polymer products, but introduces residual stresses. Residual stresses in a structural material or component are those stresses which exist in the object without other external loads. The layer removal and hole drilling method are used for the measurement of residual stress in injection molded polystyrene part. The hole drilling method is potentially more flexible for determining residual stress in complex geometries and can be used as an adoptable technique for the measurement of residual stress in polymeric materials. Results obtained by experiments agree with each other.

  • PDF

Stress Modeling of the Laser Drilling Process in Carbon Steel (레이저 드릴링을 통한 강판 가공 시 응력 모델링)

  • Lee, Wooram;Kim, Joohan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.857-864
    • /
    • 2013
  • A laser machining process has been applied in many manufacturing fields and it provides an excellent energy control for treating materials. However, a heat effect during laser machining can deteriorate material properties. Specifically, a thermally induced stress can be a problem in laser-machined structures on a metal surface. In this study, temperature and stress on cold-rolled carbon steel sheet machined with laser hole drilling were explored in an experimental approach and a numerical method. Stresses by temperature gradients inside the materials were generated in fast cooling. The stresses were measured by using a hole-drilling method and the material properties of carbon steel (SCP1-S) were obtained in the experiment. It was found that the stress predicted from the numerical analysis was in agreement with the stresses measured by using the hole-drilling method. The analysis can be applied for evaluating structure characteristics machined with a laser.

A Study on Micro-Hole Drilling by EDM (미세구멍의 방전가공에 관한 연구)

  • 윤재웅;양민양
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1147-1154
    • /
    • 1990
  • Micro-hole drilling by EDM and production of fine rods for the tool electrode or other purpose have become very important in industry. This paper suggests a new method for production of very fine rods by ultrasonic-assisted chemical machining and describes the machining characteristics of micro-hole drilling by EDM. For fine rods, copper wires of initial diameter of 250.mum are used and successfully machined into a diameter of less than 30.mum with good repeatability. The ultrasonic agitation not only accelerated the material removal rate uniformly, but also produced smooth surfaces of fine rods. To drill the micro-hole, kerosene and pure water is used as a dielectric. From the experiment, water is superior to kerosene with respect to surface roughness of inlet and outlet of hole and machined surface as well as electrode wear. However, due to the electrochemical reaction of water, small pits are remained on the workpiece surface.

A Study on the Development of a Specialized Prototype End-Effector for RDSs(Robotic Drilling Systems) (RDS(Robotic Drilling System) 구축을 위한 전용 End-Effector Prototype 개발에 관한 연구)

  • Kim, Tae-Hwa;Kwon, Soon-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.132-141
    • /
    • 2013
  • Robotic Drilling Systems(RDSs) set the standard for the factory automation systems in aerospace manufacturing. With the benefits of cost effective drilling and predictive maintenance, RDSs can provide greater flexibility in the manufacturing process. The system can be easily adopted to manage very complex and time-consuming processes, such as automated fastening hole drilling processes of large aircraft sections, where it would be difficult accomplished by workers following teaching or conventional guided methods. However, in order to build an RDS based on a CAD model, the precise calibration of the Tool Center Point(TCP) must be performed in order to define the relationships between the fastening-hole target and the End Effector(EEF). Based on the kinematics principle, the robot manipulator requires a new method to correct the 3D errors between the CAD model of the reference coordinate system and the actual measurements. The system can be called as a successful system if following conditions can be met; a. seamless integration of the industrial robot controller and the IO Level communication, b. performing pre-defined drilling procedures automatically. This study focuses on implementing a new technology called iGPS into the fastening-hole-drilling process, which is a critical process in aircraft manufacturing. The proposed system exhibits better than 100-micron 3D accuracy under the predefined working space. Based on the proposed EEF fastening-hole machining process, the corresponding processes and programs are developed, and its feasibility is studied.

Microscopic hole fabrication of glass using electro-chemical discharge method (전해 방전법에 의한 유리의 미세 구멍 가공)

  • Lee, Wang-Hoon;Lee, Young-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.89-92
    • /
    • 2001
  • In this paper, we studied on drilling a microscopic hole of glass using electro-chemical discharge methode. In this research, we fabricated a electro-chemical discharge machine for drilling glass hole. The used parameters to get a fine microscopic hole are the concentration of NaOH solution from 5wt% to 50wt%, the supply voltage from 10V to 40V and the fabricating time from 5 second to 50 second. Also, we used a 0.16mm glass plate. We learned from our experiment that, the fabrication most efficient when supply voltage is 25V-30V and concentration of NaOH solution 35wt% or less.

  • PDF

Microscopic hole fabrication of glass using electro-chemical discharge method (전해 방전법에 의한 유리의 미세 구멍 가공)

  • 이왕훈;이영태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.89-92
    • /
    • 2001
  • In this paper, we studied on drilling a microscopic hole of glass using electro-chemical discharge methode. In this research, we fabricated a electro-chemical discharge machine for drilling glass hole. The used parameters to get a fine microscopic hole are the concentration of NaOH solution from 5wt% to 50wt%, the supply voltage from 10V to 40V and the fabricating time from 5 second to 50 second. Also, we used a 0.16mm glass plate. We learned from our experiment that, the fabrication most efficient when supply voltage is 25V-30V and concentration of NaOH solution 35wt% or less.

  • PDF

Fatigue Life Evaluation on Compressive & Tensional Residual Stress Induced Materials and Residual Stress Measurement using Hole Drilling Method (HDM을 이용한 잔류응력측정과 압축·인장 잔류응력이 인가된 재료의 피로수명평가)

  • Baek, Seung Yeb
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.43-48
    • /
    • 2013
  • This paper Investigated the characteristics of residual stress in weld is composed of typical specimens, are investigated by using three dimensional thermal elasto-plastic FEM analysis. Numerically calculated residual stresses in the gas welds were then compared with experimental results obtained by the hole-drilling method. Using the stress amplitude (${\sigma}a$)R at the hot spot point of gas weld, the relations obtained as the fatigue test results for typical specimens having various dimensions and shapes were systematically rearranged to obtain the (${\sigma}a$)R-Nf relationship. It was found that more systematic and accurate evaluation of the fatigue strength of plug- and ring-type gas-welded joints can be achieved by using (${\sigma}a$)R.

Residual Stress Evaluation Caused by Press Forming and Welding of 600MPa Class Circular Steel Tube Using Hole-Drilling Strain Gage Method (홀드릴링 변형 게이지법을 이용한 600MPa급 원형 강관 제작상의 잔류응력평가)

  • Im, Sung Woo;Lee, E.T.;Shim, Hyun Ju;Kim, Jong Won;Chang, In Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.625-631
    • /
    • 2006
  • Residual stresses in structural materials are stresses that exist in the objective without the application of any service or other external loads. Manufacturing processes are the most common causes of residual stress. To examine the effect and the distribution of residual stress due to press forming and welding in the production of a 600MPa-class steel tube, a residual stress evaluation test was performed. The measurement used the Hole-Drilling Strain Gauge Method and evaluated the distribution of residual stress, which measured a total of 59 places near the welding line.

Deep Hole Drilling by Using Periodical Change of Feedrate (주기적 이송속도 변화를 이용한 심공드릴가공)

  • 왕덕현;이윤경;김원일;김용제
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.103-110
    • /
    • 2000
  • Experimental study of drilling for duralumin A2024 was conducted with intermittently accelerated and decelerated feedrate. It is achieved through a programmed periodic increase and decrease in the feedrate using a machining center. The following experimental results were performed with the objective of solving chip to disposal problems. In conventional drilling of aluminum, long continuous chips are produced with winding around the drill and causing difficulties in eliminating chips from the cutting zone. In order to acquire the basic data necessary to regulate the chip profile, the relationship between cutting variables and chip shape was investigate. The following conclusions are established from the experimental results. At a suitable feed fluctuation ratio, intermittently decelerated feed drilling proved successful in braking chips to appropriate lengths while maintaining stable cutting. Thus, it is an effective method for improving chip disposal. The amplitude of the dynamic component of cutting force in intermittent feed drilling is influenced by the feed fluctuation ratio.

  • PDF