• Title/Summary/Keyword: holding environment

Search Result 253, Processing Time 0.024 seconds

Study on the Hydrogen Delayed Fracture Property of TRIP Steel by Slow Strain Rate Testing Method (일정 변형률 시험에 의한 TRIP강의 수소 지연파괴 특성연구)

  • Cho, J.H.;Lee, J.K.
    • Corrosion Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.131-135
    • /
    • 2011
  • The demands of high-strength steel have been steadily increased to reduce the weight of vehicles. Although the TRIP steel has been the promising candidate material for the purpose, high strength hinders the application due to the susceptibility to hydrogen delayed fracture in the corrosive environment. Moreover, the testing method was not specified in the ISO standards. In this work, the test method to evaluate the susceptibility of hydrogen delayed fracture was studied by slow strain rate testing technique. The four test experimental parameters were studied : strain rate, hydrogen charging time, holding time after hydrogen charging, and holding time after cadmium plating. The steel was fractured by hydrogen in case the strain rate was in the range of $1{\times}10^{-4}{\sim}5{\times}10^{-7}/sec$. It was confirmed that the slow strain rate test is effective method to evaluate the susceptibility to hydrogen delayed fracture. The holding time over 24 hrs after hydrogen charging, nullified the hydrogen effect, that is, the specimen was no more susceptible to hydrogen after 24 hrs even though the specimen was fully hydrogen-charged. Moreover, cadmium electroplating could not prevent from diffusing out the hydrogen from the steel in the experiment. The effective experimental procedures were discussed.

A Study on the Anchoring Safety Assessment of E-Group Anchorage in Ulsan Port (울산항 E 집단정박지 묘박안전성 평가에 관한 연구)

  • Lee, Yun-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.172-178
    • /
    • 2014
  • This study suggests the minimum critical external forces based on the assessment of anchoring safety to single anchor situation for representative 8 number of ships in E-group anchorage of Ulsan port. Assessment of anchoring safety is compared holding powers of anchor with external forces of wind, wave and current. Holding powers was reflected materials of seabed, equipment numbers regarding anchor and chain weight, also external forces acting on a hull was calculated considering projected wind area and wetted surface area to the full and ballast conditions respectively. The results of anchoring safety assessments to single anchor showed that the minimum criteria of dragging anchor is a little different from ship's type, size and loading conditions. Bulk carrier can be dragged over the 15m/s of winds and Tanker can be dragged over the 13m/s of winds in case of less than 2knots of currents speed.

Development of a Breath Control Training System for Breath-Hold Techniques and Respiratory-Gated Radiation Therapy

  • Hyung Jin Choun;Jung-in Kim;Jong Min Park;Jaeman Son
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.136-141
    • /
    • 2022
  • Purpose: This study aimed to develop a breath control training system for breath-hold technique and respiratory-gated radiation therapy wherein the patients can learn breath-hold techniques in their convenient environment. Methods: The breath control training system comprises a sensor device and software. The sensor device uses a loadcell sensor and an adjustable strap around the chest to acquire respiratory signals. The device connects via Bluetooth to a computer where the software is installed. The software visualizes the respiratory signal in near real-time with a graph. The developed system can signal patients through visual (software), auditory (buzzer), and tactile (vibrator) stimulation when breath-holding starts. A motion phantom was used to test the basic functions of the developed breath control training system. The relative standard deviation of the maxima of the emulated free breathing data was calculated. Moreover, a relative standard deviation of a breath-holding region was calculated for the simulated breath-holding data. Results: The average force of the maxima was 487.71 N, and the relative standard deviation was 4.8%, while the average force of the breath hold region was 398.5 N, and the relative standard deviation was 1.8%. The data acquired through the sensor was consistent with the motion created by the motion phantom. Conclusions: We have developed a breath control training system comprising a sensor device and software that allow patients to learn breath-hold techniques in their convenient environment.

LOW TEMPERATURE STORAGE OF TRANSPLANTS UNDER DIM LIGHT

  • Kubota, Chieri
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1996.10a
    • /
    • pp.42-53
    • /
    • 1996
  • Storage methods to suppress growth of transplants and maintain their quality are required for successful commercial transplant production, since peak demand for transplants of flower or vegetable species falls during limited periods in spring and fall, due to the seasonal nature of the horticulture industry. Plug seedlings, probably due to their high planting density and limited rhizosphere, easily elongated or overgrown during the holding period before the market or greenhouse space is available. (omitted)

  • PDF

Estimation of soil Quantity and Environmental Effect on Dredged Soil (준설오니의 토량 산출 및 성분분석)

  • 신은철;오영인
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.2
    • /
    • pp.13-21
    • /
    • 2000
  • Detention basin is the temporary holding pond of treated water prior to flow out to the sea. It is very common to dredge the soil from the bottom of detention basin to keep up the water holding capacity. In this study, the amount of volume reduction of dredged soil from detention basin was estimated based on the laboratory test results. The percentage of soil particles in dredged organic soil is about 12.5∼21.9% by weight. The content of heavy metal and environmental effect for dredged soil itself and solidified dredged soil were analysed and the results are meet the standards of environmental requirement.

  • PDF

Neutralization Processes of Acid Mine Drainage (AMD) from the Abandoned Donghae Coal Mine (동해 폐탄광 일대 산성 광산폐수의 중화처리)

  • 김정엽;전효택;오대균
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.2 no.1
    • /
    • pp.38-47
    • /
    • 1995
  • This study was carried out in order to provide basic information on neutralization processes of acid mine drainage (AMD) from the abandoned Donghae coal mine in the Samchuk coalfield. The contents of potentially toxic elements in stream water increase and the level of pH decreases during dry season. Hydrated lime is turned out to be the best neutralizer of the acid mine water from a technical and economic viewpoint. From the results of equilibrium calculation, Fe and Al could be precipitated as FeOOH, and Al(OH)$_3$, respectively, in the neutralization process. The sites of holding basins necessary to equalize quantity and quality of AMD are recommended by GIS analysis, and the capacities of holding basins are determined by hydrological calculation.

  • PDF

Analysis of Wave Load and Mooring System for Ocean Monitoring Facilities - About an estimation method for horizontal force of circular pile in sand - (해상관측시설을 위한 파랑하중과 계류계 해석 -모래중에 뭍힌 원형파일의 수평력 추정방법을 중심으로-)

  • Yoon Gil Su;Kim Yong Jig;Kim Dong Joon;Kang Sin Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.1 no.1
    • /
    • pp.102-111
    • /
    • 1998
  • Ocean monitoring facilities are divided into two types, fixed type and floating type. This paper deals with wane load calculation and mooring system for a floating monitoring facility. Wave load and drift forces are calculated for an example case of floating monitoring buoy To enlarge holding power of anchor, circular pile model test was performed. A program for horizontal force of circular pile in sand was made and the calculated result showed fairy good agreement with the result of model test. It is expected that this method will provide good estimation for the holding power of the prototype of circular pile anchor which is relied upon SCUBA activity for installation.

  • PDF

Effects of Various Parameters on Biodegradation of Degradable Polymers in Soil

  • Shin, Pyong-Kyun;Jung, Eun-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.784-788
    • /
    • 1999
  • The effects of pH, moisture content, and the relative amount of a polymer sample on the biodegradation of degradable polymers in soil were studied using various polymer materials such as cellulose, poly-(butylene succinate-co-adipate) (SG) polycaprolactone (PCL), a blend of PCL and starch (PCL-starch), and a poly-lactic acid (PLA). As with other materials, the polymers degraded faster at a neutral pH than at either acidic or basic conditions. Moisture contents of 60 and 100% water holding capacity exhibited a similar biodegradability for various polymers, although the effects differed depending on the polymer. For synthetic polymers, biodegradation was faster at 60%, while the natural polymer (cellulose) degraded faster at 100%. Fungal hypae was observed at a 60% water holding capacity which may have affected the biodegradation of the polymers. A polymer amount of 0.25% to soil revealed the highest biodegradability among the ratios of 0.25, 0.5, and 1%. With a higher sample amount, the residual polymer could be recovered after the biodegradation test. It was confirmed that a test for general biodegradation condition can be applied to plastic biodegradation in soil.

  • PDF